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ABSTRACT 
 
In this paper we propose a novel 3D face recognition system. Furthermore we propose and discuss the 
development of a 3D reconstruction system designed specifically for the purpose of face recognition. The 
reconstruction subsystem utilises a capture rig comprising of six cameras to obtain two independent stereo 
pairs of the subject face during a structured light projection with the remaining two cameras obtaining texture 
data under normal lighting conditions. Whilst the most common approaches to 3D reconstruction use least 
square comparison of image intensity values, our system achieves dense point matching using Gabor 
Wavelets as the primary correspondence measure. The matching process is aided by Voronoi segmentation 
of the input images using strong confidence correlations as Voronoi seeds. Additional matches are then 
propagated outwards from the initial seed matches to produce a dense point cloud and surface model. Within 
the recognition subsystem models are first registered to a generic head model, and then an ICP variant is 
applied between the recognition subject and each model in the comparison database, using the average 
point-to-plane error as the recognition metric. Our system takes full advantage of the additional information 
obtained from the shape and structure of the face, thus combating some of the inherent weaknesses of 
traditional 2D methods such as pose and illumination variations. This novel reconstruction / recognition 
process shows 98.2% accuracy on databases containing in excess of 175 meshes. 
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1. INTRODUCTION 
 
For the past decade the majority of face recognition research has been focused on recognition from single 
frame, frontal view, 2D face images of the subject. Whilst there has been significant success in this area using 
techniques such as eigenfaces [1-3] and elastic bunch graph matching [4, 5] several issues look set to remain 
unsolved by such approaches. These issues include the current set of algorithms inability to robustly deal with 
large changes in head pose and illumination. As such an algorithm which displays properties invariant to each 
of these recognition issues would be of significant use. Recently, a growing body of research has focused on 
obtaining accurate 3D data of face surfaces with a view to use such information directly for recognition. 
Obtaining accurate 3D data would allow direct comparison between the shape of each subject face, thus 
eliminating errors associated with changes in illumination. Furthermore, the availability of true 3D data allows 
comparisons between models from arbitrary views, thus making such a solution far more pose invariant than 
current 2D solutions. Obviously the technical challenges associated with obtaining a 3D model of a face are 
far greater than those involved in capturing a 2D image and as such, significant improvements in recognition 
rates will only be achieved given a sufficiently accurate 3D capture method. Our work outlines the 
development of a reconstruction system designed specifically for the purpose of 3D face recognition. Since 
the reconstruction system has been designed with recognition in mind from the start, various assumptions 
about the nature of the object being reconstructed allow more accurate face models to be produced as 
apposed to a more generic, general purpose reconstruction system. 
 
Following the successful reconstruction of a subjects face comparisons must be carried out between the new 
model and faces already present in the system database. Ideally the algorithm must perform recognition 
quickly, however, accuracy should be considered a higher priority than speed in a robust identification 
system. Prior to recognition each model must be aligned with all other models in the database. Our system 



carries out this registration phase by aligning each model with a generic head immediately after 
reconstruction. Registration to a base model provides an approximate alignment between each of the head 
models to provide the ICP algorithm with an initial estimate of the transformation required to minimise the 
alignment error between each of the database models.  Recognition is carried out by minimizing the ICP 
point-to-plane alignment error between the subject model and each model already stored in the database. 
The average point-to-plane inter-model error is then used as the recognition metric. 

2. LITERATURE REVIEW 
 
The topics of 3D reconstruction and face recognition encompass a huge body of work amounting to decades 
worth of research. Firstly we summarise the most important and relevant work in the field and secondly 
propose how our research extends some of these ideas and methodologies. A more comprehensive analysis 
of state-of-the-art reconstruction and recognition techniques can be found in [6], however, we summarise only 
the publications most applicable to our work here. 
 
Our work implements a new algorithm for stereo vision. This involves capturing simultaneous images of a 
subject from two or more different angles. Range data is calculated by using the known geometry of the 
camera rig and solving a correspondence problem between the captured images. Stereo matching has been 
well studied within both mathematics and computer science. Hartley and Zisserman [7] provide an in-depth 
explanation of the subject in Multiple View Geometry for Computer Vision. 
 
Uchida, Shibahara and Aoki [8] propose a stereo vision based method for reconstructing face models for 
recognition using a phase-based correspondence metric. They also utilise a rig setup incorporating 4 cameras 
with a small inter-pair baseline to minimise the differences between stereo images and thus ease the 
correlation process. Additionally they employ a course-to-fine matching strategy using image pyramids and a 
sub-pixel window alignment technique. The models are registered and recognised using ICP, however, the 
small size of the recognition database suggests the method may not be accurate enough to scale to large 
subject databases. We propose in this paper that reconstruction accuracy could be improved through the use 
of projected random light patterns and wavelet based matching in order to create a more robust correlation 
between stereo pairs. 
 
An alternative to the stereo vision approach to reconstruction is to create a 3D morphable model. A method 
for automatically generating such a morphable model and performing recognition is analysed in [9]. The 
morphable model is learned from a set of 100 male and 100 female head scans such that its vector space 
representation of the face can represent any combination of shape and texture vectors that would also 
describe a realistic human face. The aim of the morphable model technique is to deduce model coefficients 
that best represent novel faces presented to the system. Model based recognition can then be achieved 
either by comparison of the model coefficients or by generating synthetic images of the model under different 
pose and illumination conditions and using a standard 2D recognition technique. The morphable model 
method has the advantage of allowing models to be constructed from a single image of a subject and thus 
allows for a relatively passive method of reconstruction without the need for special capture rigs or equipment. 
Hu, Jiang, Yan, Zhang and Zhang [10] apply the morphable model approach to recognition in their recent 
paper, implementing an analysis-by-synthesis framework for reconstruction and recognition. An attention 
worthy aspect of their work is that in addition to synthesising faces under variant pose and illumination, 
different expressions are also generated in 3D space using a MPEG-4 based facial animation technique, thus 
attempting to add a degree of expression invariance to the recognition system. 
 
In recent research Bronstein, Bronstein and Kimmel [11-14] develop an effective expression invariant 
recognition system. They first reconstruct head models using a structured light 3D scanner, however, the 
novel aspect of their work involves the representation of faces as isometries. They show that faces 
represented as geodesic distances on facial surfaces were significantly less sensitive to facial expressions 
compared to Euclidean representations. Their most recent work embeds the faces geometric structure into a 
spherical representation which they show by experiment is isometry-invariant. They refer to these new 
invariants as spherical canonical images. A similarity measure between the spherical canonical images based 



on the harmonic transform is also introduced to allow direct comparison of their facial representations. The 
accuracy of this method proved to be sufficient to successfully identify twins. 
 
In this paper we extend the work of the stereo vision based reconstruction systems through the investigation 
of the Gabor Wavelet as a stereo correspondence metric and a matching strategy suited to facial 
reconstruction. We also aim to have comparable model accuracy and recognition rates to the morphable 
model methods, despite not being able to achieve reconstructions from singular frontal images. Whilst not 
formally discussed in the current paper, in future work we hope to extend our recognition system to 
incorporate expression invariance either via a model based animation technique or through the use of an 
explicitly expression invariant facial representation. 

3. RECONSTRUCTION METHODOLOGY 
 
This section defines the precise methodology 
used to reconstruct the recognition subject 
faces. The reconstruction rig used for 
collecting 3D data consists of six cameras, of 
which four are black and white and two are 
colour. A projector emits a random light 
pattern onto the subject face as the four black 
and white cameras capture a single frame. 
Immediately after the projector is turned off the 
colour cameras capture a single frame of the 
subject face. The black and white input is used 
for point matching across the images where as 
the colour cameras are used to obtain texture 
information. Total capture time is less than 1.5 
milliseconds thus ensuring that there is 
minimal chance for the subject to move during 
the two camera capture phases. The capture 
rig was supplied by 3DMD [15], however, we 
use the raw camera data directly for our 
reconstructions. Figure 1 shows the raw input 
images of a single subject during the capture 
process. Figure 1: Raw input images 

3.1. Rig Calibration 
 
Prior to performing reconstruction the rig is calibrated using a standard calibration object. A single image 
frame of the calibration object is captured simultaneously in all cameras. The initial estimate for each camera 
projection matrix is calculated using the normalised Direct Linear Transform (DLT) algorithm. This initial 
estimate is refined by minimising the geometric error present when calibration points are back projected into 
each of the calibration images.  
 
The initial estimate of the projection matrix for each camera is calculated by utilising each correspondence 
between 2D image space coordinates (corners on the calibration object) and 3D world space coordinates. For 
each correspondence Xi xi we derive the following relationship: 
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From a set of n point correspondences, we obtain a 2n × 12 matrix A by stacking equations for each 
correspondence. The projection matrix is calculated by solving the set of equations Ap = 0. This solution can 
be further refined by assuming that the world points in our calibration are accurately known and minimising 
the geometric error present within the initial estimate of P. We may define the geometric error as: 
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Where xi is the re-projected point and  is the exact projection of the world point. Thus the solution to the 
following minimisation is the maximum likelihood estimate of P.  
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Minimising the geometric error requires the use of iterative techniques. This increases the computation time 
but as the calculation only occurs during calibration it is an acceptable loss in performance. The Levenberg-
Marquardt minimisation technique is suitable for calculating the initial DLT estimate for P which can then be 
used as an initial parameterisation for calculating the maximum likelihood of the projection matrix.  When 
used in conjunction with data normalisation and the DLT this calibration method is known as the Gold 
Standard algorithm for estimating P. The full details of this method are detailed by Hartley and Zisserman in 
Multiple View Geometry for Computer Vision [7] with the complete algorithm referenced below. 
 

 

Objective: 
Given n ≥ 6 world to image point correspondences Xi  xi, determine the Maximum Likelihood 
estimate of the camera projection matrix P. 
 
Algorithm: 

Linear Solution: Compute an initial estimate of P using a linear method. 
Normalisation: Use a similarity transformation T to normalise the image points, and a second 

similarity transform U to normalise the world space coordinates. T should be such that the 
RMS distance from the origin is √2 and U such that the RMS to origin is √3 

DLT: Form the 2n × 12 matrix A as generated by stacking equation 1 for each 2D to 3D 
correspondence. A solution to Ap=0, subject to ||p||=1, is obtained from the unit singular 
vector of A corresponding to the smallest singular value. 

Minimise Geometric error: Using the linear estimate as a starting point and minimise the 
geometric error: 
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 Over P~ , using an iterative algorithm such as Levenberg-Marquardt. 
Denormalisation: The camera matrix for the original (un-normalised) coordinates is obtained from 

P~  as: 
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Using the normalised DLT algorithm we obtain a camera matrix, P, for each of the cameras in our stereo rig. 
Given that all the cameras are calibrated simultaneously each camera matrix will project stereo matches into 
the same world coordinate system. Assuming sufficient accuracy in the location of calibration points, there is 
no requirement to align range data taken from different stereo pairs during reconstruction. It may be beneficial 
at this stage to perform bundle adjustment on each of the camera matrices to minimise the projection error 



between the independent stereo pairs, however, we found reconstruction to be sufficiently accurate without a 
bundle adjustment stage. 

3.2. Gabor Jet Correspondence Metric 
 
A novel aspect of our work involves the use of Gabor Jets as a correspondence metric. Gabor filters have 
been employed extensively within the face recognition field [16-18], however, our work utilises many of the 
well studied aspects of Gabor filters to judge correspondence between stereo pairs. The aspects of the Gabor 
filter which are of interest to us include their invariance to lighting conditions and small perspective changes. 
Pötzsch, Krüger and Malsburg [19] show Gabor jets to be robust against exactly this class of distortions 
making them an ideal candidate for stereo correspondence problems.  
 
A Gabor jet is a condense and robust representation of a local grey value distribution. It is based on a Gabor 
wavelet transform, which is a convolution with a family of complex Gabor wavelets having the shape of plane 
waves restricted by a Gaussian envelope function. The wavelets are similar in the sense that they can all be 
generated from a mother wavelet by rotation and scaling. All complex coefficients of the transform taken at 
one image location form a jet. Useful properties of the Gabor filter include invariance to changes in lighting 
conditions and to small perspective changes. These properties are ideally suited to the stereo 
correspondence problem since changes in lighting and perspective are always present between images taken 
from different cameras aimed at the same subject. 
 
Daugman [20] generalised the 2D Gabor function to the following form: 
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Where, (x0, y0) is the centre of the receptive field in the spatial domain and ( 0ξ , V0) is the optimal spatial 
frequency of the filter in the frequency domain. σ and β are the standard deviations of the elliptical Gaussian 
along x and y. 
 
In order to perform analysis of a particular image region a family of Gabor wavelets is derived from a mother 
wavelet. Each of these derived filters is then convolved with the image, with the response of each filter being 
combined into a vector representing all of the filters. This vector of Gabor filter responses is known as a 
Gabor Jet. Comparisons between different Gabor jets allow a measure of similarity between the image 
regions to be computed. Equation 5 defines the jet similarity functions for two images (J and J’): 
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Where aj, j=1,…,Gf is the magnitude of the result of the convolution between the real and imaginary part of the 
Gabor Filter, j, and the image. 
 
In the described stereo vision system the initial seed points in the reference image are matched to pixels in 
the corresponding image first by obtaining the Gabor jet for filters centred on the reference seed pixel, this jet 
is then compared with the jet corresponding to each pixel on the corresponding epipolar line. The pixel with 
the highest similarity is then selected as a match. 



3.3. Voronoi based propagation matching 
 
Whilst attempting to correlate feature points between images in a stereo pair, various factors such as image 
noise, occlusion or illumination differences can lead to incorrect matches regardless of which correlation 
algorithm is used. For this reason it is necessary to constrain the matching process as far as possible using 
knowledge of the nature of the surface we are attempting to reconstruct. Common matching constrains 
include: similarity threshold, uniqueness, continuity, ordering, epipolar and relaxation. In order to constrain the 
way in which the correlation algorithm searches for an appropriate match a search strategy is required. An 
efficient search strategy will increase the accuracy of a correlation algorithm by reducing the potential search 
space, whilst usually decreasing the overall search time by requiring fewer comparisons per feature point.  An 
efficient matching strategy is described below, which increases both accuracy and speed within the 
reconstruction system. 
 
The proposed matching strategy is based on the Voronoi 
propagation method described by Li Tang, Tsui and Wu [21]. A 
number of modifications to their original design have been made in 
order to produce a more robust strategy. These differences include 
the use of Gabor Jets rather than SSD (Sum of Squares 
Difference) as the similarity metric and the application of the 
epipolar constraint during matching. We show the superiority of 
Gabor Jets as a correlation metric in Section 4. Furthermore Tang, 
Tsui and Wu opted to withdraw the epipolar constraint in order to 
allow their matching strategy to function on un-calibrated image 
pairs, however, since we have full calibration data available, it is 
trivial to reduce the matching search space by utilising our 
knowledge of the Fundamental matrix. 
 
Initially N seed points are selected in the source image. These 
seed points should, ideally, be the most salient feature points in the 
input image since errors at this stage will produce catastrophic 
results later in the matching process. The candidate seed points 
are selected by finding corners with large eigenvalues within each 
source image. These candidate seed points are then matched to 
their corresponding locations in the image pair. Since it is 
imperative at this stage to correctly match the seed points, the 
Gabor correlation algorithm is used and performs a full epipolar line search for each of the seed points.  

Figure 2: Voronoi segmented input image

 
Once the seed points have been selected and matched the Voronoi diagram of the original seed points is 
calculated. The Voronoi diagram of a collection of feature points is a partition of an image space into cells, 
each of which consists of those image points which are closer to one feature point than to any other.  Voronoi 
diagrams are involved in situations where a space needs to be partitioned into “regions of influence”.  Once 
the Voronoi diagram has been calculated, matches are propagated from the seed points towards boundaries 
of the Voronoi cells until all of the matched regions are merged together. Matches are still confined to the 
appropriate epipolar line, however, the search space is constrained to within a small range of disparities 
around the seed cell disparity, thus within each cell, matches form a smooth surface. Figure 2 shows an 
example source image with the corresponding Voronoi segmentation of the seed points. 
  
This method of propagation inherently enforces a continuity constraint into the matching process. This makes 
the assumption that object surfaces will be smooth and continuous. This assumption is not always valid for 
real world objects and will certainly break down at large discontinuities in the image, however, it is a suitable 
constraint given the advantages in speed that can be obtained through its use. Furthermore, additional 
processing steps could be employed and the constraint dynamically withdrawn at image locations where it 
does not hold true. Propagation provides a convenient method of producing dense correlation maps whilst 



also reducing the computational cost of the matching process.  The reduction in computation stems from the 
fact that once the match for the initial seed point has been calculated the search for points within the same 
cell can be guided by the relative position of the matched seed point.  This reduces the search space by an 
order of magnitude from a full epipolar line search to a small localised area.  
 
Matches propagate outwards from the initial seed points in each cell in a standard breadth first search 
pattern.  As a match for each pixel is found its neighbours are then added to the queue of pixels waiting to be 
matched. Pixels with high match strengths are used to produce an initial estimate for the position of 
neighbouring pixels, resulting in a smooth surface whilst only requiring a small number of comparisons 
between candidate matches. The algorithm cycles until every pixel within the given Voronoi cell has been 
matched to its corresponding point. The entire process is then repeated for each initial seed point until a 
dense disparity map has been produced and each of the matches can be projected into the required 3D world 
coordinates. The Voronoi propagation method proves suitable for facial reconstruction since propagation 
performs best in situations where no large discontinuities are present. As each side of the face is dealt with by 
an independent stereo pair no major discontinuities are encountered thus matching via propagation is an ideal 
method. The validity of these claims is demonstrated by the reconstruction results. 

4. RECONSTRUCTION RESULTS 
 

Using the methods outlined in the previous 
sections we are able to obtain high quality 
models of recognition subject faces. The 
design of the camera rig allows almost full 
coverage of the subject face making it highly 
suitable for recognition. Due to the nature of 
the structured light projection during the 
capture phase, hair is not reconstructed. This 
is of no concern to us since the exclusion of 
subject hair is not relevant to the recognition 
process. Figure 3 shows a single example of 
one of the reconstruction subjects from our 
recognition database. 
 
It should be noted that some portions of 
none-face objects are also reconstructed. 
Currently these portions of the model must 
be manually removed prior to recognition, 
however, basic skin detection algorithms 
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Thus, in order to measure reconstruction accuracy we compare models produced via SSD, ZMNCC and 
Gabor wavelets with the “ground truth” 3DMD model and deduce the quality of the reconstructed model via 
the ICP point-to-plane error metric. 
 
The graph on the right shows the error rates of 
reconstructions from 10 randomly selected 
models from our database. Reconstructions were 
carried out using Gabor, ZMNCC and SSD 
however the SSD reconstruction results are 
omitted as the reconstructions produced using 
this method were very poor. Upon closer analysis 
of the reasons behind the poor SSD results we 
find that illumination differences between each 
image in the stereo pair produces erroneous 
matches when SSD is used as the algorithm 
does not contain any mechanism to compensate 
for variations in illumination. Thus it becomes 
obvious that any algorithm capable of performing 
accurate matches on our input data displays a 
degree of illumination invariance. This claim is backed up by the ZMNCC results since this algorithm is 
specifically designed to compensate for constant illumination variations between input images and performs 
much better than SSD on our test data. This also demonstrates the illumination invariance of the Gabor 
transform and thus the differences between ZMNCC and Gabor correlation metrics are largely the result of 
each of the algorithms ability to compensate for the perspective variations between each of the images in a 
stereo pair. As can be seen from the reconstruction accuracy of the two analysed correlation metrics, Gabor 
outperforms ZMNCC in almost all cases. 
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5. RECOGNITION METHODOLOGY 
 
Once the reconstruction phase is complete we begin the 
recognition process. This phase consists of first registering the 
newly scanned model to a generic head model. A generic model is 
used to ensure that each of the scans is aligned with a consistent 
model. For the highest accuracy alignment it would be best to use 
the average face of the database models as the generic head. 
Alignment to the generic head is carried out by manually selecting 
the tip of the nose and the centres of the eyes both on the subject 
scan and the generic head. A least-squares minimisation is then 
carried out to find the rotation and translation required to align the 
subject and the generic head. Figure 4 shows a screenshot of a 
scan (green points) registered to the generic model (blue points). 
Each model is registered to the generic model immediately after 
being scanned, therefore, each of the models in the database is 
approximately aligned to every other model. This initial registration 
phase is required since the ICP algorithm requires a reasonable 
initial estimate of the inter-model alignment to function correctly. 
 
The ICP algorithm is primarily used for aligning range data of an 
object where several scans of the object have been taken (for 
example from different views) and need to be stitched together to 
form the complete model. We apply the same technique here, 
however, face models from different subjects are aligned to each 
other using ICP and then the resultant alignment error between the m
Many variants of the ICP algorithm exist and have been well studied. 
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odels is used as a recognition metric. 
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which has proved useful within production environments [22] and has been shown to be robust against 
scanned data containing many kinds of surface feature [23]. Specifically, the features of this variant include: 
random point sampling, matching selected points to the closest corresponding point with a normal within 45 
degrees of the source normal, constant point weighting, rejection of edge vertices, the point-to-plane error 
metric and the “select-match-minimise” iteration method. In order to obtain an accurate match between 
different subjects we iterate the ICP algorithm 20 times between each of the models in the database. The 
similarity between models is measured by calculating the average point-to-plane error between each of the 
models after they have been aligned as closely as possible. Testing was carried out using both the RMS and 
point-to-point error as the recognition metric, however, this led to much lower recognition accuracy. 

6. RECOGNITION RESULTS 
 
The table below shows the overall 
accuracy of the recognition system along 
with the number of subjects, meshes and 
comparisons. The 5 unmatchable meshes 
in the database are not considered in the 
overall accuracy of the system since these 
subjects only had one head scan in the 
database and hence no correct match is 
possible. The subjects in the database 
were not asked to perform any specific 
expression during the capture stage, nor 
were they asked to look in any specific 
direction. This led to a database 
containing many different expressions and 
varied head poses. The accuracy of the 
results demonstrates the pose invariance 
of the system and, to a lesser degree, 
some expression invariance. All the 
incorrect matches are shown to be the 
result of large changes in subject 
expression, however, this was to be expected since we were not aiming to incorporate any explicit expression 
invariance within the system. Figure 5 shows an example of one of the incorrectly matched models, where 
variation in expression has caused errors in recognition. 

Figure 5: Erroneously matched models 

 
nSubjects nMeshes nComparisons Good Matches Unmatchable Bad Matches Accuracy 

58 175 30450 167 5 3 98.24% 
 
In all the system produced 3 incorrect matches over 170 queries. In each case where an incorrect match 
occurred the subject was captured in an expression varying greatly from the other scans of the same subject 
in the database. Future revisions of the recognition system will likely incorporate a greater degree of 
expression invariance, either through expression synthesis or an expression invariant model representation. 
Despite these shortcomings the overall accuracy of the system is comparable to other current 3D recognition 
technology. 

7. CONCLUSIONS AND FUTURE WORK 
 
In this paper we have presented a complete 3D reconstruction system using a 6 camera capture rig. Stereo 
correlation was carried out using the Gabor wavelet as the similarity metric. We show that this 
correspondence metric is relatively robust to changes in illumination levels across stereo pairs and that it is a 
suitable choice for a similarity measure when used for small baseline stereo applications. Furthermore we 
introduce a Voronoi cell propagation matching strategy and show that this technique provides suitable 



constraints for increasing both the accuracy and speed of the dense stereo correlation process. We also 
discuss a number of reasons why this matching strategy is particularly suitable for facial reconstruction. 
Finally we demonstrate how, when used in conjunction with the ICP algorithm, our reconstructed models can 
be used as the basis for an accurate 3D recognition system. 
 
Whilst we present a complete reconstruction and recognition system, much work can be done to improve on 
reconstruction accuracy, reconstruction speed and recognition rates. The primary focus of future work will be 
the introduction of systems for dealing with expression variance on scanned faces. We propose the use of 
expression invariant representations of face models or expression synthesis in the 3D domain followed by 
traditional 3D recognition techniques. The introduction of such as system would almost certainly produce 
100% accuracy rates on our current 3D database, hence future work should include the expansion of our 
current set of scans to include more subjects with even greater expression and pose variation. Other potential 
improvements to the recognition system include the use of texture data in the recognition process or the 
combination of more traditional 2D methods backed up by the additional 3D data. Finally, we also wish to 
investigate the use of the 3D Gabor wavelet as a recognition metric on key feature points of the face model. 
2D Gabor wavelets have proved a fruitful area of research in the 2D domain and as such the 3D Gabor 
wavelet may show potential for 3D recognition. 
 
In addition to improving the recognition subsystem we propose a number of improvements to the 
reconstruction system. It may be possible to increase matching speed and accuracy through the use of model 
guided matching. The current implementation of the system allows for the reconstruction of none-face models 
(despite being tailored to face model reconstruction), by further constraining the matching process to only 
reconstruct face objects it would be possible to improve both model accuracy and reconstruction speed. This 
approach seems to have some interesting parallels with model based reconstruction and it would be perhaps 
worth investigating such an approach. 
 
A final important aspect of our work which we have not considered in detail is the selection of a surface 
meshing algorithm. Our current implementation uses the well researched PowerCrust [24] algorithm to 
construct surface meshes from point clouds, however, recent work produced by Song Yi [25] for the University 
of Nottingham suggest that a Bezier surface approach to meshing may be far superior to conventional 
triangulation approaches. 
 
The availability of a number of commercial 3D scanners has the potential to make our work on model 
reconstruction somewhat redundant, however, the benefits of developing a reconstruction system tailored to 
facial 3D reconstruction should allow higher recognition rates than when using a generic commercial scanner. 
Furthermore the proprietary and non-modular nature of most commercial scanners prevents there use in other 
areas of research where certain aspect of our work may otherwise be useful. As an example of this our work 
has been used within research relating to augmented reality for car navigation systems and surface modelling 
using Bezier surfaces. Such cross project collaboration would not have been possible without the availability 
of an open, modular reconstruction system such as the one presented here. A closed, proprietary 
reconstruction system would not have been suitable for the purposes of these other projects and as such our 
work has wider applicability than that which is presented here, thus justifying the development of an open 
reconstruction project. 
 
It is hoped that the future work outlined above will eliminate the current shortcomings of the reconstruction / 
recognition system. Despite the continuing work, the system is at a stage where we have demonstrated 
accurate reconstruction and recognition results which are comparable with current commercial systems. The 
implementation of the future work discussed in this section should provide a truly state of the art system, with 
a high degree of pose, illumination and expression invariance suitable for 3D face recognition within the 
security industry. 
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