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1 Introduction 
 
This report aims to describe the technical details behind the development of a 3D reconstruction 
system for face recognition.  Initially the methods used for constructing a 3D model of the face from 
several cameras are discussed followed by some consideration of the pitfalls and problems behind 
some of the techniques. 
 
The reconstruction system uses the Direct Linear Transform (DLT) method for both calibration and 
triangulation along with the Gabor Jet correspondence measure and Voronoi cell propagation 
matching strategy for stereo correlation.    We also discuss the accuracy of the DLT method and 
assess its suitability for use in model construction for face recognition. 
 
The final section of the report shows some example reconstructions using the described methods in 
combination with a six camera capture rig with a random light pattern projector and suggests how 
some of the problems currently being encountered could be solved. 
 

2 DLT Camera Calibration 
 
The most commonly used camera calibration method is perhaps the DLT (direct linear 
transformation) method originally reported by Abdel-Aziz and Karara [1].  The DLT method uses a 
set of control points whose object space/plane coordinates are already known. The control points 
are normally fixed to a rigid frame, known as the calibration frame.  The problem is essentially to 
calculate the mapping between the 2D image space coordinates (xi) and the 3D object space 
coordinates (Xi).  For this 3D  2D correspondence the mapping should take the form of a 3x4 
projection matrix (P) such that xi = PXi for all i. 
 

2.1 2D DLT Algorithm 
 
Whilst we will be using the DLT algorithm for camera calibration it is also a suitable technique for 
finding linear mappings between any two data sets given a certain number of corresponding data 
points between the sets.  The simplest form of the DLT algorithm is described below, however, it 
should be evident that the only difference between this method and the 3D case is the dimension of 
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the problem.  In the 2D case the solution matrix has dimension 3x3 where as the 3D result 
produces a 3x4 projection matrix.  The algorithm for the 3D DLT case is described in the next 
section. 
 
The most basic form of the 2D DLT algorithm requires a set of four 2D to 2D point 
correspondences: xi  x’i.  The transform is then given by the equation x’i = Hxi.  The equation 
may then be expressed in terms of a vector cross-product: x’i × Hxi = 0.  Expressing the transform 
in terms of a vector cross-product allows a simple linear solution to H to be calculated. 
 
We denote the jth row of the matrix H by HjT: 
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Denoting X’i as (x’i, y’i, w’i)T the cross-product may be given explicitly as: 
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Since hjTxi = Xi

Thj for j = 1,2,3, this gives a set of three equations for H which may be written as in 
the following equation:  
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When each of the four coordinates being considered is presented in this form we have a set of 
equations: Aih = 0, where A is a 3x9 matrix and h is a 9-vector made up of entries to the matrix H.  
This equation is linear in the unknown h. 
 
It should be noted that whilst each set of coordinate matches leads us to a set of three equations 
only two of them are linearly independent.  Thus, it is standard practice whilst using the DLT 
algorithm to ignore the third equation whilst solving for H.  The set of equations then becomes: 
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This gives us the equation Aih = 0, where Ai is now a 2x9 matrix.  This equation holds true for any 
homogeneous coordinate representation of the coordinates involved. 
 
Each point correspondence gives rise to two independent equations in the entries for H.  Given four 
correspondences we obtain a set of equations Ah = 0 where A is formed from the equation 
coefficients built from the matrix rows Ai.  Next, in order to solve for A, we obtain the singular value 
decomposition (SVD) of A and take the smallest singular value as our solution and thus determine 
the linear transform between xi and x’i. 
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If more than four corresponding points are known and the measurements contain noise (as is usual 
in computer vision processing) then we must find an over-determined solution for the equation Ah = 
0.  This is achieved simply by stacking the n 2x9 matrices Ai into a single 2nx9 matrix and using 
SVD to solve for A.  This is known as the basic DLT algorithm. 
 

2.2 3D DLT Algorithm 
 
In order to apply the basic 2D  2D DLT algorithm to the 2D  3D case we must simply 
change the dimension of the problem.  In the 3D case for each correspondence Xi  xi we derive 
the following equation: 
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As in the 2D case the third equation is dependant on the first two and as such can be discounted.  
This leaves us with the following: 
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From a set of n point correspondences we now have a 2nx12 matrix A formed by stacking each of 
the equations from their respective point correspondences.  The projection matrix for a given 
camera can be computed by solving the set of equations Ap = 0, where p is a 3x4 projection matrix. 

3 DLT Reconstruction 
 
Having utilised the DLT method to calculate the projection matrix for each camera in a stereo rig it 
then becomes possible to project 2D camera-space coordinates into 3D when the point is visible 
from more than one camera.  Since we know this is a linear mapping (assuming that we ignore 
radial distortion in the cameras) it is again possible to use the DLT method to calculate a previously 
unknown mapping.  This section describes a simple linear triangulation method that uses the same 
principles discussed in Section 1. 
 
The reconstruction problem is solved as follows.  For each input image we have a measurement x 
= PX, x’ = P’X where x is the 2D camera-space coordinates of a world point, x’ is the same point 
projected into the camera-space coordinates of a second camera.  X represents the 3D world-
space coordinate that we are attempting to recover.  These two equations can be combined into the 
form AX = 0, which is an equation linear in X.  The homogeneous scale factor is eliminated by a 
cross-product to give three equations for each image point visible in more than one of the cameras 
in the system.  As an example the equation derived for a point in the first image would be given as x 
× (PX) = 0.  Expanded, this gives the following set of three equations: 
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Combining equations from both cameras to produce an equation in the form AX = 0 gives us: 
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Solving for A using SVD allows us to estimate the value of X and thus the 3D coordinate of any 
point for which we know the camera-space coordinates from two cameras for which the projection 
matrix has already been determined. 
 

4 DLT Data Normalisation 
 
The result of the DLT algorithm for computing homographies depends on the coordinate frame in 
which the points are expressed [2]. For this reason it is desirable to normalise the input data before 
applying the DLT algorithm.  Data normalisation improves the accuracy of the results whilst 
ensuring that the algorithm will be invariant to arbitrary choices in scale and coordinate frame.  
Image space coordinates for each of the cameras is normalised independently as follows: 
 

1. Coordinates are translated so their centroid is located at the origin. 
2. Coordinates are scaled so that the average distance to the origin is √2 and thus the 

average point is equal to (1,1,1). 
 
The world space coordinates are normalised in a similar manner except in the 3D case the scaling 
is computed to ensure the average distance to the origin is √3 therefore making the average 3D 
point of the input data to be (1,1,1,1). 
 
Once the data has been normalised the DLT algorithm is applied as before. However, applying 
normalisation to the input data leaves us with a normalised projection matrix for each camera.  In 
order to de-normalise the projection matrix we must reverse the normalisation transform.  If T is the 
similarity transform which normalises the image space coordinates, U is a second similarity 
transform to normalise the world space coordinates and P’ is the normalised projection matrix then 
the projection matrix for un-normalised coordinates is calculated as follows: 
 

UPTP '1−=  
 

The recommended form of the DLT algorithm requires the use of the data normalisation step before 
calculating the homography. 
 

5 The DLT Gold Standard Algorithm 
 
One method of calculating the error in a reconstruction is by measuring the geometric error.  
Assuming that the world points in our calibration are accurately known then we may define the 
geometric error as: 
 

∑ 2)ˆ,( ii xxd  
 
Where xi is the re-projected point and x̂  is the exact projection of the world point.  Thus the 
solution to the following minimisation is the maximum likelihood estimate of P.  
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Minimising the geometric error requires the use of iterative techniques.  This increases the 
computation time but as the calculation only occurs during calibration it is an acceptable loss in 
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performance.  The Levenberg-Marquardt minimisation technique is suitable for our purposes and 
the initial DLT estimate for P can be used as an initial parameterisation for calculating the maximum 
likelihood of the projection matrix.  When used in conjunction with data normalisation and DLT this 
calibration method is known as the Gold Standard algorithm for estimating P.  The full details of this 
method are detailed in [2] with the complete algorithm referenced below: 
 
 
Objective: 
Given n ≥ 6 world to image point correspondences Xi  xi, determine the Maximum Likelihood 
estimate of the camera projection matrix P. 
 
Algorithm: 

3. Linear Solution: Compute an initial estimate of P using a linear method. 
a. Normalisation: Calculate the similarity transform T to normalise the image 

coordinates and similarity transform U to normalise the world points as described in 
the Data Normalisation section. 

b. DLT: Form the 2n × 12 matrix A by stacking equation 2 as generated by each 2D to 
3D correspondence.  A solution to Ap=0, subject to ||p||=1, is obtained from the unit 
singular vector of A corresponding to the smallest singular value. 

4. Minimise Geometric error: Using the linear estimate as starting point minimise the 
geometric error: 

∑
i

iiP XPxd 2)~~,~(min  

 Over P~ , using an iterative algorithm such as Levenberg-Marquardt. 
5. Denormalisation: The camera matrix for the original (un-normalised) coordinates is 

obtained from P~  as: 
 

UPTP '1−=  
 

6 Gabor Stereo Correspondence 
 
In order to perform 3D reconstruction using the DLT method we must know the image space 
coordinates of a given world point in at least two separate 2D projections.  In order to produce 
these 2D coordinate matches a search is carried out over the input images.  Initially, we take the 
point to be reconstructed in the first image and carry out a search of the second image to find a 
suitable match.  Since we have already obtained the projection matrix for each of the cameras, the 
epipolar constraint allows us to limit the search space to the corresponding epipolar line on the 
second image.  In order to calculate the best candidate match for pixels in the epipolar search 
space Gabor Jets are used as the similarity measure.  
 
The Gabor wavelet, [3], was originally proposed by Denis Gabor in 1946 in order to represent 
signals s a combination of elementary functions. The Gabor wavelet has been shown to provide 
optimal analytical resolution in both the spatial and frequency domains.  Later work by Granlund [4] 
introduced the 2D counterpart (equation 4) of the elementary wavelet.  This was closely followed by 
later work by Daugman [5] who presented evidence that the 2D Gabor wavelet family well 
represented the receptive fields of the human visual cortex.  More recently Okajima studied the 
Gabor wavelet family from an information theory perspective showing that Gabor type receptive 
fields can extract maximal information from a local image region [6].  Owing to its array of useful 
properties the Gabor wavelet has found applications in face recognition [7, 8], texture segmentation 
[9], finger print recognition [10, 11], hand writing recognition [12, 13] and stereo vision [14, 15]. 
 
The 2D form of the Gabor wavelet is as follows: 
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Where, where (xo, yo) is the center of the receptive field in the spatial domain and ([o, Qo) is the 
optimal spatial frequency of the filter in the frequency domain. σ and β are the standard deviations 
of the elliptical Gaussian along x and y. 
 
In order to perform analysis of a particular image region a family of Gabor wavelets is derived from 
a mother wavelet.  Each of these derived filters is then convolved with the image, with the response 
of each filter being combined into a vector representing all of the filters.  This vector of Gabor filter 
responses is known as a Gabor Jet.  Comparisons between different Gabor jets allow a measure of 
similarity between the image regions to be computed. Equation 5 defines the jet similarity functions 
for two images (J and J’): 
 

 
 
Where aj, j=1,…,Gf is the magnitude of the result of the convolution between the real and imaginary 
part of the Gabor Filter, j, and the image. 
 
In the described stereo vision system the initial seed points in the reference image are matched to 
pixels in the corresponding image first by obtaining the gabor jet for filters centered on the 
reference seed pixel, this jet is then compared with the jet corresponding to each pixel on the 
corresponding epipolar line.  The pixel with the highest similarity is then selected as a match. 
 
Previous work, [16], has shown the Gabor correspondence method to be robust against illumination 
and perspective distortions which we will encounter within the vision system. Much of the work 
using Gabor filters, particularly that stemming from research into 2D face recognition similarity 
metrics, suggests that it would prove a suitable correspondence measure for our work. 
 

7 Voronoi Based Propagation Matching 
 
Whilst attempting to correlate feature points between images in a 
stereo pair various factors such as image noise, occlusion or 
illumination differences can lead to incorrect matches no matter what 
correlation algorithm.  For this reason it is necessary to constrain the 
matching process as far as possible using knowledge of the nature of 
the surface we are attempting to reconstruct.  Common matching 
constrains include: similarity threshold, uniqueness, continuity, 
ordering, epipolar and relaxation.  In order to constrain the way in 
which the correlation algorithm searches for an appropriate match a 
search strategy is required.  An efficient search strategy will increase 
the accuracy of a correlation algorithm by reducing the potential 
search space, whilst usually decreasing   the overall search time by 
requiring fewer comparisons per feature point.  An efficient matching 
strategy is described below, which increase both accuracy and speed 
within the reconstruction system. 
 
The proposed matching strategy is based on the Voronoi propagation 
method proposed by Tang, Tsui and Wu in [17]. A number of 
modifications to their original design have been made in order to produce a more robust strategy.  
Initially N seed points are selected in the initial image.  These seed points should, ideally, be the 
most salient points in the input image since errors at this stage will produce catastrophic results 
later in the process.  The original seed points are then matched to their corresponding locations in 
the image pair.  Since it is imperative at this stage to correctly match the seed points, the Gabor 
correlation algorithm is used and performs a full epipolar line search for each of the seed points.  

Figure 1 
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The Gabor algorithm is used since it is often more robust to changes in illumination and perspective 
than other alternatives.  
 
Once the seed points have been selected and matched the Voronoi diagram of the original seed 
points is calculated (figure 1).  The Voronoi diagram of a collection of seed feature points is a 
partition of an image space into cells, each of which consists of those image points which are closer 
to one feature point than to any other.  Voronoi diagrams are involved in situations where a space 
needs to be partitioned into “spheres of influence” [17], hence it is a good choice for use in this 
propagation algorithm.  Once the Voronoi diagram has been calculated, matches are propagated 
from the seed points towards boundaries of the Voronoi cells until all of the matched regions are 
merged together.  Strong matches in the propagation process are used to guide further matches 
within the same cell. 
 
This method of propagation inherently enforces a continuity constraint into the matching process.  
This makes the assumption that object surfaces will be smooth and continuous. This assumption is 
not always valid for real world objects and will certainly break down at large discontinuities in the 
image, however, it is a suitable constraint given the advantages in speed that can be obtained 
through its use.  Furthermore, additional processing steps could be employed and the constraint 
dynamically withdrawn at image locations where it does not hold true.  Propagation provides a 
convenient method of producing dense correlation maps whilst also reducing the computational 
cost of the matching process.  The reduction in computation stems from the fact that once the 
match for the initial seed point has been calculated the search for points within the same cell can be 
guided by the relative position of the matched seed point.  This reduces the search space by an 
order of magnitude from a full scan line search to a small localized area.  
 
Matches propagate outwards from the initial seed points in each cell in a standard breadth first 
search pattern.  As a match for each pixel is found its neighbours are then added to the queue of 
pixels waiting to be matched.  Pixels with high match strengths are used to produce an initial 
estimate for the position of neighbouring pixels reducing the potential search space to a window 
only a few pixels wide, resulting in a smooth surface with only a low number of comparisons 
between candidate matches.  The algorithm cycles until every pixel within the given Voronoi cell 
has been matched to its corresponding point.  The entire process is then repeated for each initial 
seed point until a dense disparity map has been produced. 
 

8 DLT Accuracy Analysis 
 
In order to test the correctness of the DLT algorithm for both calibration and reconstruction a 
synthetic calibration object was created using a 3D modelling package.  A synthetic scene was 
used to ensure that both the world space coordinates and image space coordinates are accurately 
known.   

Table 1 

Once reconstruction has been carried out the geometric error between the reconstructed object and 
the original object are compared.  We also compare the re-projected 2D coordinates with the 
original image space coordinates in order to test the 2D geometric error.  Several different camera 
configurations were also tested to ensure the results reflect several real world scenarios.  The 

Algorithm Rig Configuration 3D Geometric Error: d(X, X') 2D Geometric Error: d(x, PX) 

    Sum Average Sum (P / P') Average (P / P') 

DLT R45 / T20 2.990047 0.025556 73.40056 / 88.56606 0.62735 / 0.75697 

Gold Standard R45 / T20 3.00303 0.025667 73.17187 / 88.55565 0.62540 / 0.75688 

DLT R25 / T0 2.765166 0.023634 52.78314 / 52.34621 0.45113 / 0.44740 

Gold Standard R25 / T0 2.768046 0.023659 52.79225 / 52.37272 0.45121 / 0.44763 

      

Rig Config. Key: A 45 deg. Angle between cameras / 20 Unit horizontal separation 

  B 25 deg. Angle between cameras / 0 Unit horizontal separation 
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synthetic object being reconstructed is a standard calibration object with 117 control points placed 
along two separate planes at 90 degrees to each other. 
 
As can be seen from the accuracy test results (table 1) 2D geometric error is approximately 0.5 
pixels per reconstructed point.  The 3D geometric error is less then 0.03 units in all cases.  The 
Gold Standard algorithm outperforms the standard DLT algorithm using rig configuration A, 
however, under configuration B the standard DLT algorithm has very slightly more accurate results.  
This is surprising since the Gold Standard algorithm seeks to minimise the 2D geometric error.  
This is most likely a result of the data normalisation step which despite the claim that “data 
normalisation should not be considered an optional step when implementing the DLT algorithm”, [2] 
in certain situations seems to decrease the accuracy of the results, this is despite claims of 
consistent improvements in accuracy using the Gold Standard algorithm by Hartley and Zisserman, 
[2].  Overall the accuracy of either the DLT or the Gold Standard algorithms should be suitable for 
our reconstruction purposes. 
 

9 Reconstruction Results 
 
In this section we demonstrate some of the results of using the outlined techniques in real world 
situations.  The rig used for the example reconstructions consists of six cameras (4 black and white 
and 2 colour) along with a projector for producing a structured light pattern.  Reconstruction takes 
place using the four black and white cameras for stereo matching whilst the two colour cameras are 
used for texture mapping the resultant object.  Figure 2 shows the input images acquired from the 
rig. 
 

 
Figure 2: Top row left to right 1A, 2A, 2C. Bottom row left to right 1B, 2B, 1C. 
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The rig is calibrated using a standard calibration object and projection matrices were determined 
using the Gold Standard algorithm discussed previously.  Stereo matches were calculated first 
between cameras 1A and 1B and then between cameras 2A and 2B.  Since all six cameras are 
calibrated simultaneously from a single image of the calibration object they each project into the 
same world space coordinate system and thus no registration between the left / right camera 
reconstructions is required. 
 
Once a set of reconstructed points 
have been calculated and merged 
into a single point cloud we 
construct a surface using the 
powercrust [18, 19] algorithm.  
Using some of the available noise 
reduction and smoothing 
parameters we produce a robust 
closed surface for the 
reconstructed face object.  The 
texture coordinates are then 
generated by back projecting the 
object vertices to the colour input 
images (cameras 1C and 2C).  The 
texture mapping process is 
complicated due to the presence of 
multiple texture images and thus 
we must decide which of the two 
texture images should be used for 
which object facet.  In order to 
choose the appropriate texture 
source the angle of each facet 
normal to each of the two texture 
cameras is calculated.  The texture 
camera with the lowest normal to 
camera angle is selected for a 
given facet since this texture image 
can be shown to be viewing that particular object region with the least amount of distortion.  Figure 
3 shows a fully reconstructed face with full texture mapping. 
 
The accuracy of the rig used for constructing the face model in Figure 3 was tested in a similar 
manner to the accuracy analysis carried out in the previous section:  after calibration the world 
points are re-projected to the initial camera space coordinates and the geometric error calculated.  
Table 2 shows the error rates for each of the cameras in the reconstruction rig. 
 

Camera 3D Geometric Error: d(X, X') 2D Geometric Error: d(x, PX) 

  Sum Average Sum Average 

1A 14.991159 0.267699 

1B 
2.592395 0.046294 

15.108214 0.26979 

2A 19.607978 0.350142 

2B 
2.861195 0.051093 

19.891001 0.355196 
Table 2 

As shown by the above results the four camera rig calibration results show less geometric error 
than the synthetic scene used to test the algorithm.  The average geometric error over the whole 
system is 0.31 pixels per reconstructed point; where as the 3D geometric error is on average 0.097 
units per reconstructed point. 
 

 

Figure 3 
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10 Outstanding Issues 
 
Several outstanding issues remain with the reconstruction system.  This section will discuss these 
problems in more detail along with potential solutions. 
 

10.1 Multi-Source Lighting 
 
During reconstruction two independent cameras 
are used to capture texture information from the 
face.  In the reconstruction rig the two cameras 
are located either side of the face.  Despite both 
texture images being captured simultaneously 
the angle difference between cameras causes 
variable lighting conditions on each side of the 
face causing an obvious “join” in the final texture 
map.  Figure 4 shows a clear example of 
changes in lighting conditions between the two 
texture sources. 
 
Two possible solutions to this problem are firstly 
to automatically correct the lighting levels for 
each of the cameras or secondly to blend the 
two texture images at the join in the texture map.  
The first (lighting correction) method is probably 
the most desirable since this would ensure both 
halves of the reconstruction are displayed under 

the appropriate illumination.  A histogram 
matching solution may be appropriate for solving 
this issue; however, the process is complicated due to background objects in each of the texture 
images preventing a true histogram of face colours to be computed correctly. 
 
The issue of correcting face textures in the 3D model may also be unnecessary since the 
recognition stage is likely to use only 3D shape data and thus correct texture mapping of the model 
is probably not a requirement for recognition. 
 

10.2 Input Image Masking 
 
Prior to performing stereo matching on the input images it is necessary to segment face/non-face 
pixels.  Currently this part of the reconstruction process is carried out manually.  Development of an 
automatic segmentation method is complicated since the input images are captured as the 
structured light pattern is projected onto the face.  This renders the methods such as skin colour 
segmentation useless.  One possible solution would be to carry out the face segmentation on the 
colour camera images and then project the mask onto the non-colour (structured light) input.  A 
second option would be to develop a method capable of segmenting the structured light images 
directly, however, this would require the implementation of a novel segmentation method where it 
would be preferable to use a more tired and tested technique. 

11 Conclusion 
 
The above technical solution presents the methodology required to successfully reconstruct 3D 
scenes given a suitably calibrated camera rig and input images. 3D output could be improved 
through the use of a more sophisticated surface construction algorithm and by addressing issues in 
the previous section, however, the above information should provide a starting point for researchers 
wishing to perform multi-view 3D reconstruction. 
 
 

Figure 4
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