
 
 
 
 
 
 

Year 1 Annual Review 
Stereo Vision for 3D Face Recognition 

 

PhD Student: Daniel Bardsley 

Supervisor: Bai Li 
 

University of Nottingham 

August 2005 
 
 
 
 
 

 
 

Page 1 of 36 



Abstract 
Face recognition is one of the most important and rapidly advancing areas 

of computer science.  Increased recent interest in improving commercial 

security systems has lead to intensive research into biometric identification 

and verification applications.  Whilst a number of biometrics are potentially 

available for human recognition the face can usually be captured with the 

greatest degree of “passivity”, thus making it the most suitable choice for 

general security implementations. 

 

Traditional approaches to the face recognition problem usually attempt 

identification on the basis of two dimensional data.  This approach, whilst 

partially successful, often proves not to be robust under adverse 

recognition conditions.  Our work attempts to improve upon the accuracy 

offered by currently available systems by incorporating 3D data into the 

recognition process.  Utilising techniques from multi-view geometry a 3D 

model of the face is constructed and refined, followed by a recognition 

stage which utilises both 3D geometry and 2D texture to guide the 

identification process.  In order to successfully achieve these goals a 

robust 3D capture process is required.  Despite the availability of several 

commercial 3D scanners we propose the development of a system capable 

of 3D capture with minimal hardware requirements and zero interaction 

with the recognition subject in order to make the system desirable for a 

multitude of non-invasive security applications. 

 

At its current stage, the work investigates the fundamental problem 

associated with stereo vision (multi-view correspondence) and investigates 

potential solutions.  In addition work has been carried out to determine 

suitable methods for surface construction given an initial point cloud.  This 

work will then be integrated with stereo rig calibration modules and finally 

with a recognition stage in order to form the complete identification system 

which will be extensively tested for accuracy against other state of the art 

systems. 
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1 Introduction 

Interest in face recognition research stems from the desire for the availability of a robust 

biometric which can be used for passive identification of a subject.  Since the concept of 

computer aided face recognition was first proposed over 30 years ago [1] the majority of 

research in the field has been devoted to the development of increasingly complex and more 

accurate 2D face recognition systems.  Such 2D systems, however, are intrinsically 

susceptible to errors caused by changes in lighting conditions, head pose, expression and 

image capture quality.  Such errors are a result of the insufficient amount of data captured 

about a face by a 2D image. 

 

3D Face recognition systems aim to use the additional 3D data to eliminate some of the 

intrinsic problems associated with 2D recognition systems.  For example, the 3D surface of a 

face is invariant to changes in lighting conditions and hence recognition systems that use this 

data should be, by definition, illumination invariant.  Furthermore, given that it is possible to 

register a number of 3D models to a base pose, such a system would also be viewpoint 

invariant (although to what degree depends on the completeness of the 3D head model).  In 

addition to the 3D data it remains possible to capture texture information and thus use all the 

available data to guide the recognition process. 

 

Prior to any face recognition or verification taking place the 3D data must first be captured.  

3D data can be captured using a number of methods including: depth from motion, statistical 

analysis, correlation matching, structured light or laser scanning.  Our work attempts to 

minimise hardware requirements as far as possible.  As such only 2 medium resolution colour 

cameras will be used to obtain input for the 3D reconstruction.  In addition it should be 

possible to capture the subject face model with a maximum amount of “passivity”, i.e. the 

process should require as little as possible interaction with the subject.  The capture system 

must, however, provide suitable depth resolution and accuracy to allow successful recognition 

from the captured 3D data. 

 

In order for the whole system to function correctly a number of problems must be solved 

successfully.  Initially the stereo capture rig must be calibrated to allow correct projections 

back into 3 dimensions from the initial stereo 2 dimension input.  Second a large number of 

corresponding points must be matched between each of the images in a stereo pair.  

Following this stage the sequence of matching points must be projected back into 3 

dimensions using the camera calibration data obtained in the first stage.  At this stage we 

have a 3D point cloud containing an arbitrary number of points from the surface of the subject 

face.  This data can now be utilised directly for recognition, or further processed to produce a 

surface (mesh) representation of the face.  Given this data, we can proceed with, either 

further processing or recognition, depending on the 3D recognition algorithm in use and the 
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format of the data on which it operates.  For a more detailed description of the processes and 

requirements of each stage the reader should refer to [2]. 

 

Section 2 contains a detailed literature review both on stereo vision techniques required to 

capture the 3D face surface and on current state of the art techniques for recognising faces in 

3 dimensions.  Also in this section is a literature review of super resolution techniques which 

we propose for use in addition to conventional stereo vision methods in order to enhance the 

potential depth resolution of our face reconstructions. 

 

Section 3 describes the correlation algorithms used within the described system.  A brief 

summery of the SSD correlation algorithm is presented along with a description of Gabor 

filters as applied to the stereo correspondence problem.  Results obtained from each of the 

correlation methods is presented and compared to other popular stereo matching techniques.  

This is followed in Section 4 with an implementation of a Voronoi cell based propagation 

matching strategy which utilises the correlation algorithms described in Section 3 in order to 

produce increased matching accuracy and speed.  Next, in Section 5, issues relating to the 

algorithms and processes already described are presented with potential solutions and future 

work. 

 

Section 6 introduces the idea of super resolution as one of the potential solutions to issues 

discussed in the previous section.  After discussing various super resolution methods the 

applicability of super resolution to the stereo vision problem is analysed. 

 

Section 7 investigates a number of surface estimation methods and compares a number of 

widely available surface reconstruction implementations.  Section 8 analysis a series of 3D 

head models and compares inter and extra person differences.  The aim to this analysis is to 

deduce the overall accuracy requirements of the 3D reconstruction subsystem in order to 

produce accurate recognition results. 

 

Finally, Section 9 discusses the progress so far in relation to the goals of the project and 

analyses the direction future work should take. 
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2 Literature Review 

2.1 Stereo Vision 

In order for computers to effectively process, segment and analyse visual input of their 

environments it is often a requirement that the system is able to obtain data of the 

surrounding world in a format that can be easily equated to the actual environment in which 

the system finds itself.  In the case of many vision systems this could be a 3 dimensional 

representation of the real world.  To enable a vision system to obtain depth data from a scene 

it is possible to use a number of different techniques.  Three dimensional scene data can be 

obtained from sources including object shading, motion parallax data, structured light or laser 

range finders.  However, perhaps the most obvious technique is that of stereo vision.  In a 

system analogous to a pair of human eyes, the input to two or more cameras observing the 

same scene can be analysed and the differences between the images used to compute depth 

and hence a model of the scene that the system is viewing.  The utilities of a robust 

implementation of such a system are  many and potentially include applications in areas such 

as space flight [3], face recognition [4], immersive video conferencing [5] and industrial 

inspection [6] to name just a few. 

 

Systems that utilise motion cues in order to directly reconstruct 3D data are in existence but 

are not appropriate or accurate enough to handle the intricacies of the human face.  Smith et 

al. [7] describes such a system that utilises motion between image frames to simultaneously 

segment and produce relative depth ordering of objects in a scene.  Whilst the data available 

from motion cues could potentially be useful in segmentation, feature extraction and layer 

recovery it is not a suitable technique for the capture of face features and as such is of little 

use for any 3D surface recognition systems except perhaps as a tool for initial segmentation 

processes. 

 

The traditional and much more common approach to 3D reconstruction is represented by a 

mass of stereo correspondence based reconstruction techniques.  Image points are matched 

across stereo image pairs and then reconstructed to three dimensions.  The most common 

class of correspondence measures are pixel based algorithms [8, 9] which compare similarity 

between pixels across images in order to deduce likely matching image points.  The problem 

of matching 2D camera projections of real world image points across stereo image pairs leads 

to a host of additional issues including input point selection and “good” match selection.  

Keller conducts a comprehensive evaluation of matching algorithms and match quality 

measures in [10].  Additional work that contains a comprehensive evaluation of a large 

number of correspondence algorithms can be found in [11].  In addition this work defines a 

framework for evaluating correspondence measures and can be used as a benchmark for 

new algorithms. 
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A number of solutions to the stereo correlation problem have been proposed that operate on 

the camera input in the frequency domain.  Frequency domain approaches are typically 

attractive because of their processing speed and inherent sub-pixel accuracy [12].  Amongst a 

number of researchers, the work provided by Ahlvers and Zoler is of particular note.  In their 

work they use classical Gabor filters to obtain frequency phase information about image 

feature points, however, they go on to reinforce the initial match by integrating magnitude 

Gabor response information into the matching measure when phase information alone is not 

sufficient to discriminate between a set of candidate matches.  They report significant 

improvements in matching accuracy when including both phase and magnitude information.  

Over recent years the Gabor filter has become one of the mostly used classes of Wavelet for 

frequency domain analysis.  This is due to its status as the “optimum” time / frequency 

analysis primitive.  Other wavelet’s have proved useful in other areas of computer vision, 

however, the versatility of the Gabor wavelet means that it is a popular choice amongst 

computer vision researches at the present time. 

 

A solution which approaches the problem from an energy minimisation perspective is the 

Graph Cut solution [13].  The basic technique is to construct a graph for the energy function to 

be minimised such that the minimum cut on the graph also minimises the energy.  In order to 

solve stereo vision graph cut problems each pixel is given a label corresponding to its 

estimated disparity.  The graph cut is then calculated using an energy minimisation model 

such as the Potts Interaction Energy Model or the Linear Interaction energy model.  Graph 

Cut algorithms perform relatively well in terms of accuracy, however, since minimising the 

energy function is usually NP-Hard, techniques for graph cut estimation have been developed 

in order to calculate local minima within a constant factor of the global minimum.  A thorough 

discussion on graph cuts for stereo vision can be found in [14] where they implement a Multi-

camera reconstruction system based on Graph Cut methods. 

 

A minor modification to the classical correspondence matching methods, which non-the-less 

represents a significant body of work, uses projected light patterns in order to aid the 

matching process.  During the capture process a light pattern is projected onto the surface to 

be reconstructed, this light pattern provides easy to match feature points for the 

correspondence algorithm to detect.  Variation exists between the patterns which may be 

projected, for example random light projections (such as those used in [15]) provide strong 

and salient feature points for the correspondence algorithm to match where as strip light 

projections allow the surface to be estimated based on distortions caused to the light strip as 

it falls on the reconstruction subject surface.  Finally, coded light patterns use the structured 

light sequence to determine a unique code for each pixel. Finding pixel correspondences then 

involves simply identifying the pixel in the matching image that has the same unique code. 

Such an approach is discussed in [16].  Whilst such scanners provide robust capture and 
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fairly accurate (often sub-millimeter) model construction they still require the additional cost 

and setup complexity of a projector to produce the appropriate light pattern. 

 

The final popular reconstruction method utilizes (often expensive) laser depth scanners.  A 

similar method of depth triangulation is used here as in other correspondence methods, 

however, a laser is used to measure the depth of each point on the object surface.  Despite 

the expense other disadvantages include lengthy scan times and an inability to capture the 

surface texture without the aid of additional conventional cameras.  Laser scanners have, 

however, become popular since they are usually considered the most accurate method for 

capturing 3D data.  In [17] the use of a laser scanner in order to capture and keep an 

accurate record of important monuments and statues is described. 

 

2.2 3D Face Recognition 

For the past decade the majority of face recognition research has been focused on 

recognition from single frame, frontal view, 2D face images of the subject.  Whilst there has 

been significant success in this area using techniques such as eigenfaces and elastic bunch 

graph matching several issues look set to remain unsolved by such approaches.  These 

issues include the current set of algorithms inability to robustly deal with large changes in 

head pose and illumination.  As such an algorithm which displayed properties invariant to 

each of the above recognition issues would be of significant use.  Recently, a growing body of 

research is focussed on obtaining accurate 3D data of a face surface with a view to use such 

information directly for recognition.  Obtaining accurate 3D data would allow direct 

comparison between the shape of each subjects face, thus eliminating errors associated with 

changes in illumination.  Furthermore, the availability of true 3D data allows comparisons with 

the model and a subject from an arbitrary view thus making such a solution far more pose 

invariant than current 2D solutions.  Obviously the technical challenges associated with 

obtaining a 3D model of a face are far greater than those involved in capturing a 2D image 

and as such for significant improvements in recognition rates will only be achieved given a 

sufficiently accurate 3D capture method. 

 

Given the availability of accurate 3D data, a number of varying techniques for recognition 

have been suggested in the literature.  Two main classes of 3D recognition exist.  The first 

class uses the acquired model to render synthesized views of the given subject under 

different lighting and pose conditions.  Essentially the model is used in the training stage to 

produce a more representative sample of training images which are then recognised using a 

more traditional 2D approach.  The second class of recognition solutions attempts to 

recognise a subject directly from the available 3D data.  Using this technique data for both the 

user database and recognition subject must be in the form of a 3D model.  Some systems 

utilise surface texture properties in addition to surface shape to enhance recognition ability. 
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Huang, Blanz and Heisele propose a 3D recognition solution which utilises a morphable 3D 

head model to synthesize training images under a variety of conditions [18].  The main idea 

behind the solution is that given a sufficiently large database of 3D face models any arbitrary 

face can be generated by morphing models already in the database.  In the recognition stage 

of their work a component based face recognition system is used.  10 features are extracted 

from the recognition subjects face and combined into a single feature vector.  A support 

vector machine (SVM) classifier is then trained to discriminate between the feature vectors 

stored in the user database.  Preliminary results for their solution are reported at around 98% 

accurracy for faces rotated up to 36 degrees in depth, however, the database only contained 

six subjects and required 7700 synthetic faces per subject. 

 

Other solutions attempt to perform recognition directly based on the available 3D data.  

Classical approaches to this problem usually attempt to find a Euclidean transformation which 

maximizes a given shape similarity measure.  Irfanoglu, Gokberk and Akarun [19] use a 

discrete approximation of the volume differences between facial surfaces as their Euclidean 

similarity measure.  In contrast Bronstein, Bronstein and Kimmel [20] propose an alternative 

to this solution where they choose an internal face representation which is invariant to 

isometric distortions. Invariance to isometric distortions allows the recognition system to be 

highly tolerant to changes in expression; this is in contrast to classical techniques which are 

more suited for matching rigid objects due to the nature of the Euclidean transformations most 

often used. 

2.3 Super Resolution 

Classical stereo vision techniques in which a 3D model is produced from two displaced views 

of a scene are well known to be highly sensitive to image noise.  This sensitivity is often the 

result of inaccurate correlation between image points in the stereo pair where excessive noise 

causes too greater difference between images for the matching algorithm to overcome.  

Furthermore high quality camera optics are usually a requirement for stereo reconstruction 

since higher quality CCDs usually decrease image noise and are usually capable of capturing 

images at a higher spatial resolution which in turn increases the potential 3D resolution of the 

final reconstruction. 

 

In order to overcome or limit some of the affects of noisy and low-resolution images in the 

stereo vision process we aim to enhance the effective resolution of the input devices in our 

stereo rig.  This will be achieved through the use of information from multiple image frames in 

order to improve the quality of our stereo reconstruction both in terms of image noise and 3D 

resolution.  The process of creating a high resolution image from a sequence of low resolution 

images is known as super resolution reconstruction. 
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Theoretical and practical limitations usually constrain the achievable resolution of any imaging 

device.  During the process of capturing a scene, the continuous image intensity distribution 

of the real world is warped by a series of continuous point spread functions which represent 

distortions caused by atmospheric blur, motion blur and the camera lens.  The scene is finally 

discretized at the CCD resulting in a digitised noisy frame. 

 

The aim of our work is to combine super resolution reconstruction techniques with a stereo 

vision system in order to enhance the available 3D resolution of our model reconstructions.  

Low 3D resolution in models produced with conventional stereo vision systems can often be 

attributed to low 2D resolution in input images.  This is due to an insufficient range of 

disparities across the input images and causes many 3D points to appear at the same depth.  

In order to solve this, access to a greater range of disparities is required. This could be 

achieved through accurate sub-pixel correlation algorithms or greater resolution input images.  

We will be describing a solution using super resolution in order to artificially enhance the 

resolution of our input images in order to increase potential 3D resolution. 

 

The super resolution problem was originally described in [21] where a frequency domain 

approach was suggested.  Although the frequency domain methods are conceptually simple 

they are of limited use due to their sensitivity to model errors [22].  Furthermore, early 

solutions to the super resolution problem could only deal with pure translational inter-frame 

motion, thus making them inappropriate for use in our system where multi-object non-linear 

inter frame motion can be expected. 

 

Four major and distinct approaches to the super resolution problem have been proposed over 

the last couple of decades, these are frequency domain methods, the maximum likelihood 

(ML) estimator [23], the maximum a posteriori (MAP) probability estimator [24, 25] and 

projection onto convex sets (POCS) [26-28].  The latter three methods are all based in the 

spatial domain and prove to be of greater interest to our work than the frequency domain 

methods. 

 

Applications for super resolution implementations can be found in the following areas: 

 

1. Remote Sensing: where a sequence of images of the same scene can be captured 

but an improved resolution is sought after. 

2. Video freeze frames: Typically a single (often interlaced) frame from a video recorder 

will be of poor visual quality.  Several consecutive frames could be combined with a 

super resolution algorithm in order to enhance the freeze frame. 

3. Medical Imaging (MRI etc.): these enable multiple acquisitions of a subject but usually 

at a limited resolution. 
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4. Low Cost Capture: The effective resolution of low cost hardware can be increased 

through the use of super resolution. 

 

It is the fourth application that we will be considering in the most detail since our stereo rig 

consists of low cost cameras from which we wish to obtain the maximum possible 

performance. 

 

There has been limited work in the field directly assessing the use of super resolution for 

stereo vision, however, a number of papers do discuss the matter [29, 30].  Wagner, Waagen 

and Cassabaum consider the use of super resolution within the context of robotic systems 

where various size, weight, power and cost constraints limit the actual camera resolution and 

hence enhanced quality input obtained through super resolution techniques is desirable.  It 

seems however, that outside the robotic, satellite imagery and remote sensing fields, little 

consideration has been given to the combined super resolution / stereo vision problem. 
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3 Stereo Correlation Algorithms 

In order to produce a 3D reconstruction it is first necessary to correlate a number of points 

between the images captured with each of the cameras in a stereo rig. There are vast arrays 

of available correlation algorithms including local window based methods [31-34] and feature 

based techniques [35].  A number of other available methods for matching points between 

images are discussed in [36] by Laganiere and Vincent.  Since in our work we are trying to 

maximise the resolution and detail of the final 3D model we will be attempting to produce 

dense correlations between the input images (i.e. each pixel in an image should be matched 

to exactly one pixel in the corresponding image) therefore sparse matching strategies and 

feature based approaches will not be considered in depth. 

 

Our work will combine attractive features of two differing correlation algorithms.  The first is a 

Gabor Wavelet based technique, selected for its accuracy and tolerance to variations in 

lighting and pose commonly observed between stereo image pairs.  The second algorithm is 

a basic SSD algorithm selected for its speed.  The matching module of the system uses 

Gabor matching in the early stage of the process in order to guide SSD based matching in the 

latter stages to produce a dense correlation map between the two images. 

 

The following two sections describe the SSD and Gabor correspondence algorithms that are 

utilized in this work. 

3.1 SSD 

The Sum of Squared Differences (SSD) algorithm is a window based correlation technique 

which is defined as follows: 

 

 

 

 

where (2W+1) is the width of the correlation window. Il and Ir are the intensitie

right image pixels.  [I, j] are the coordinates of the left image pixel.  

The following definitions complete the algorithm: 

 

 

 
 

where the first statement is the relative displacement between left and right im

the second statement represents the SSD correlation function. 
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This algorithm functions by assuming that correlating image points will be surrounded by a 

window of other image points which when subtracted from their respective pixels in the 

matching correlation window can then be squared and the results summed to measure the 

similarity of the two points at the centre of each window. 

 

A major problem of window-based stereo matching lies in selecting appropriate window size. 

A window must be large enough to include enough intensity variation for reliable matching, 

but small enough not to include any depth discontinuities [34].  An additional problem lies in 

the fact that the algorithm makes a direct comparison between pixel intensity levels at a local 

level and thus is susceptible to lighting, noise and perspective variations between the images 

being matched.  The simplicity of the SSD calculations, however, allow fast implementations 

of this correlation algorithm to be developed. 

3.2 Gabor Wavelet 

The Gabor wavelet, [37], was originally proposed by Denis Gabor in 1946 in order to 

represent signals as a combination of elementary functions. The Gabor wavelet has been 

shown to provide optimal analytical resolution in both the spatial and frequency domains.  

Later work by Granlund [38] introduced the 2D counterpart (equation 4) of the elementary 

wavelet.  This was closely followed by later work by Daugman [39] who presented evidence 

that the 2D Gabor wavelet family well represented the receptive fields of the human visual 

cortex.  More recently Okajima studied the Gabor wavelet family from an information theory 

perspective showing that Gabor type receptive fields can extract maximal information from a 

local image region [40].  Owing to its array of useful properties the Gabor wavelet has found 

applications in face recognition [41, 42], texture segmentation [43], finger print recognition [44, 

45], hand writing recognition [46, 47] and stereo vision [48, 49]. 

 

The 2D form of the Gabor wavelet is as follows: 

Equation 4 

Where, where (xo, yo) is the center of the receptive field in the spatial domain and ([o, Qo) is the 

optimal spatial frequency of the filter in the frequency domain. σ and β are the standard 

deviations of the elliptical Gaussian along x and y. 

 

In order to perform analysis of a particular image region a family of Gabor wavelets is derived 

from a mother wavelet.  Each of these derived filters is then convolved with the image, with 

the response of each filter being combined into a vector representing all of the filters.  This 

vector of Gabor filter responses is known as a Gabor Jet.  Comparisons between different 

Gabor jets allow a measure of similarity between the image regions to be computed. Equation 

5 defines the jet similarity functions for two images (J and J’): 
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Where aj, j=1,…,Gf is the magnitude of the result of the convolution betwee

imaginary part of the Gabor Filter, j, and the image. 

 

In the described stereo vision system the initial seed points in the refere

matched to pixels in the corresponding image first by obtaining the gabo

centered on the reference seed pixel, this jet is then compared with the jet c

each pixel on the corresponding epipolar line.  The pixel with the highest s

selected as a match. 

 

Previous work, [50], has shown the Gabor correspondence method to be

illumination and perspective distortions which we will encounter within the

Much of the work using Gabor filters, particularly that stemming from resear

recognition similarity metrics, suggests that it would prove a suitable c

measure for our work. 

3.3 Results 

In order to test the abilities of 

the selected correlation 

measure two sample image 

pairs were selected.  One 

computer generated image 

pair for which ground truth 

data is available and another 

“real world” image pair for 

which there is no available 

ground truth data were 

chosen as the test images.  

The “map” and “pentagon” 

stereo image pairs are shown 

in figure 1.  The disparity map 

results where tested for 

accuracy (where ground truth data exists) using the framework proposed by S
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Figure 1: Test stereo image pairs. Above: map, Below: pentago
charstein [11]. 



 

The disparity maps for the “pentagon” image pairs are shown in figure 2, with the results from 

SSD correlation on the left and the 

the Gabor correlation method on the 

right.  As can be seen from these 

results the Gabor correlation 

algorithm provides a greater amount 

of details in its depth map, 

especially on the roof of the 

pentagon.  This increase in 
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Figure 2: Pentagon disparity maps. Left: SSD, Right: Gabo
accuracy comes at the cost of 

mputation complexity.  The correlation process for the SSD similarity measure is 13% 

ter than the corresponding Gabor filter correspondence method. This speed difference is 

 result of having to convolve the input image with 40 separate Gabor filters in order to 

duce a jet with which to calculate a matching score.  Since no ground truth data for this 

age pair is available an exact measure of the increase in accuracy is not possible with this 

age pair. 

Figure 3: Map Disparity Images. Left: SSD, Middle: Gabor , Right: Ground Truth 

ure 3 shows the “map” disparities as calculated by the SSD and Gabor algorithms.  As can 

 seen from these results, without additional constraints applied to the correlation algorithms 

guide the matching process, the results can be less than satisfactory.  Despite this, when 

alysed using the framework proposed in [11] it is possible to see the increased accuracy 

en using Gabor filters as the matching algorithm.  An example of this increased accuracy 

n be seen where the Gabor correlation method successfully calculates variations in 

parity on the map image where the SSD method produces a flat surface.  Despite this the 

bor method does seem to produce disparity maps with higher level of noise.  The Gabor 

rrelation method estimated disparity with 8% fewer errors than the SSD method (using a 

x21 patch window), although the results from both algorithms are non-optimal.  The 

lowing section discusses a matching strategy designed to eliminate many of the errors 

duced when attempting unconstrained dense stereo correlation. 
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4 Voronoi Propagation Matching Strategy 

Whilst attempting to correlate feature points between images in a stereo pair various factors 

such as image noise, occlusion or illumination differences can lead to incorrect matches no 

matter what correlation algorithm.  For this reason it is necessary to constrain the matching 

process as far as possible using knowledge of the nature of the surface we are attempting to 

reconstruct.  Common matching constrains include: similarity threshold, uniqueness, 

continuity, ordering, epipolar and relaxation.  In order to constrain the way in which the 

correlation algorithm searches for an appropriate match a search strategy is required.  An 

efficient search strategy will increase the accuracy of a correlation algorithm by reducing the 

potential search space, whilst usually decreasing   the overall search time by requiring fewer 

comparisons per feature point.  An efficient matching strategy is described below, which is 

then shown to improve both matching accuracy and computational complexity. 

4.1 Algorithm Description 

The proposed matching strategy is based on the Voronoi 

propagation method proposed by Tang, Tsui and Wu in [51]. 

A number of modifications to their original design have been 

made in order to produce a more robust strategy.  Initially N 

seed points are selected in the initial image.  These seed 

points should, ideally, be the most salient points in the input 

image since errors at this stage will produce catastrophic 

results later in the process.  The original seed points are 

then matched to their corresponding locations in the image 

pair.  Since it is imperative at this stage to correctly match 

the seed points, the Gabor correlation algorithm is used and 

performs a full epipolar line search for each of the seed 

points.  The Gabor algorithm is used since it is far more robust to changes in illumination and 

perspective than other alternatives.  

Figure 4: Voronoi partitioned input 

 

Once the seed points have been selected and matched the Voronoi diagram of the original 

seed points is calculated (figure 4).  The Voronoi diagram of a collection of seed feature 

points is a partition of an image space into cells, each of which consists of those image points 

which are closer to one feature point than to any other.  Voronoi diagrams are involved in 

situations where a space needs to be partitioned into “spheres of influence” [51], hence it is a 

good choice for use in this propagation algorithm.  Once the Voronoi diagram has been 

calculated, matches are propagated from the seed points towards boundaries of the Voronoi 

cells until all of the matched regions are merged together.  Strong matches in the propagation 

process are used to guide further matches within the same cell. 
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This method of propagation inherently enforces a continuity constraint into the matching 

process.  This makes the assumption that object surfaces will be smooth and continuous. 

This assumption is not always valid for real world objects and will certainly break down at 

large discontinuities in the image, 

however, it is a suitable constraint 

given the advantages in speed that 

can be obtained through its use.  

Furthermore, additional processing 

steps could be employed and the 

constraint dynamically withdrawn at 

image locations where it does not 

hold true.  Propagation provides a 

convenient method of producing 

dense correlation maps whilst also 

reducing the computational cost of the matching process.  The reduction in computation 

stems from the fact that once the match for the initial seed point has been calculated the 

search for points within the same cell can be guided by the relative position of the matched 

seed point.  This reduces the search space by an order of magnitude from a full scan line 

search to a small localized area.  
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Figure 5: Propagation strategy and search windows 

 

The order of propagation from the seed point is shown in figure 5.  The initial seed point S is 

matched to S’ using the Gabor correlation algorithm.  Next surrounding pixels 1,2,3 and 4 are 

added to the list of pixels to be matched.  After the neighbouring pixels have been added to 

the list they are matched using the SSD correlation algorithm.  The relative position of pixel 1 

to S is used to guide the position of the search window whilst attempting to find 1’.  A 

hypothetical search window for 1’ is marked in red on figure 5.  As each pixel neighbouring S 

is matched its neighbours are also added to the list of pending matches.  At each correlation, 

provided the match strength is above a given threshold, the previous match is used to 

estimate the position of the next match.  The algorithm cycles until every pixel within the given 

Voronoi cell has been matched to its corresponding point.  The entire process is then 

repeated for each initial seed point until a dense disparity map has been produced. 

4.2 Results 

Figure 6 shows the disparity map produced using the 

Voronoi cell based propagation strategy. The map was 

produced from the same stereo pair as the SSD and 

Gabor correlation measures shown in the previous 

section. Clearly the results are far superior to those of 

the unconstrained correlation algorithms, and a fairly 

accurate depth map is produced.  Furthermore, an 

 
Figure 6: Voronoi disparity map output
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increase in speed is obtained due to a reduced number of matches to be considered.  Further 

evaluation of this matching strategy and it’s applicability to stereo reconstruction for face 

recognition is considered in the following section.  As compared to the truth data it’s clear that 

the range of disparities is limited by the input spatial resolution.  A proposed solution to this 

problem is discussed in Section 6. 
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5 Stereo Vision Issues 

Despite many years of research into the stereo vision problem, it remains partially unsolved.  

Many methods can produce excellent disparity maps and correlations given a suitable 

similarity measure and a set of well chosen constraints.  However, most state of the art 

algorithms still struggle to deal with large perspective distortions, areas of low image texture, 

occlusions, illumination and computation complexity issues.  Furthermore, most of the 

algorithms investigated are accurate to the nearest pixel, rather than functioning to, a more 

desirable, sub-pixel accuracy.  This leads to the banding effect, clearly visible in figure 6, 

where pixels of the same disparity are represented as being at the same depth, where when 

compared to the truth data variations in depth exist even within these disparity bands. 

 

In a standard stereo rig the separation of each of the cameras is an important factor in the 

final reconstruction.  Wider separation of the cameras allows a more accurate reconstruction, 

however, matches across the stereo pairs becomes more difficult as the amount of 

perspective distortion between the two images increases.  Work in the 2D face recognition 

field has found the Gabor wavelet to be one of the most robust operators against minor 

perspective distortions, hence, much of our focus has been on the Gabor filter.  More work 

should, however, be carried out in analysing optimum camera separation in regard to the 

maximum amount of distortion Gabor filters can commonly handle before producing matching 

errors. 

 

Another issue associated with position of the stereo cameras is that of occlusion.  Detecting 

occlusion in a stereo image pair is essential to a successful reconstruction, since attempts to 

match occluded pixels will always result in errors.  Other vision systems attempt to 

compensate for this, often through the use of more than two cameras, this is to ensure that no 

point on the subject face is occluded, and thus every point can be reconstructed.  Since we 

are attempting a reconstruction with the minimum amount of hardware possible additional 

cameras are not an option and thus a more robust solution to the occlusion problem is 

required.  The “map” disparity images clearly show the problem in figure 6 where occluded 

image points are assigned more or less random disparities.  This is a key area which requires 

work if the system is going to function efficiently. 

 

Due to the nature of the reconstruction system and each stages dependence on an earlier 

stage we are left with a process of constrained optimisation.  As such, errors in the calibration 

phase will result in additional errors later in the reconstruction.  This is true for each stage of 

the process and hence an error in correlating features between images causes errors at the 

next stage of reconstruction.  Theoretically this problem can be combated by applying 

constraints to the matching process, however, in reality these are only partially effective and 

errors in the resultant point cloud are inevitable. To this end a stronger set of constrains 
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needs to be employed along with a more accurate confidence measure for each of the 

matches. 

 

Another potential stereo vision issue is that of depth resolution.  Depth resolution is affected 

primarily with the resolution of the input images and the accuracy of the correlation algorithm.  

Laser scanners and structured light based 3D capture devices are often accurate to less than 

a millimetre.  It is unlikely that our image based system will be able to reconstruct points to 

such accuracy initially, however, using methods such as super resolution and 3D interpolation 

at later stages in the reconstruction we may be able to increase the effective 3D resolution of 

our models to this level.  This step may also prove unnecessary since other recognition 

research claims good levels of recognition accuracy using only 64 depth levels in their face 

model [20], suggesting that highly accurate models may not be required initially. 

 

The Voronoi propagation matching strategy described in the previous section makes for a 

much more robust, dense correlation between stereo image pairs.  The results show an 

increase in disparity map accuracy over using just the standard correlation measure.  

Furthermore the increases in speed possible due to greater constraints placed on the 

matching process mean that the Voronoi strategy has many advantages over other 

possibilities.  The strategy can break down in areas where there are large discontinuities in 

the reconstruction surface since the correct match may then lay outside of the algorithm 

search window, however, the face, in general, is a continuous surface and whilst this 

algorithm may not be suitable for other matching problems, it shows many useful properties 

when computing matches on the surface of the face. 

 

Future developments in this area of the work will focus on improving the matching strategy.  

Possibilities include a specific occlusion detection stage or method for better handling surface 

discontinuities.  Furthermore, an improved match strength scoring metric would be very useful 

in eliminating incorrect matches as early as possible.  Finally, a speed increase at this stage 

of the reconstruction will be desirable since at present, dense disparity map production may 

take more than ten minutes due to the massive number of Gabor jet calculations and 

comparisons that must be performed (when using images greater than 500 X 500 on a 

standard 2Ghz desktop PC).  However, accuracy rather than speed should be the main 

concern of this work, and faster methods for point correlation can always be incorporated at a 

later date. 
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6 Super Resolution 

Recent years have seen a growing interest in the problem of super-resolution restoration of 

video sequences.  The task of reconstructing super resolution images from multiple under 

sampled and degrade images can take advantage of the additional spatio-temproal data 

available in the image sequence.  In particular scene motion can lead to frames in the source 

video containing similar, but not identical image information.  The additional information 

available in these frames make a reconstruction of visually superior frames at higher 

resolution than that in the original data possible.  We aim to utilise this potential increase in 

2D resolution to enhance the quality of the resultant 3D model. 

6.1 Super Resolution Methods 

The abundance of suitable applications for a robust super resolution solution has led to much 

work on the subject.  A large body of this work was initially focused on frequency domain 

approaches [21, 52, 53], however, previously mentioned weaknesses with this approach 

make it unsuitable for our stereo vision system. 

 

The second major body of work approaching the super resolution problem turns its attention 

to solutions in the spatial domain.  Major advantages through working in the spatial domain 

include the ability to model: arbitrary motion, motion blurring between frames, optical system 

degradations, effects of non-ideal sampling at the CCD and complex degradations (such as 

compression blocking artefacts).  It is the ability to model arbitrary motion models that is of the 

most relevance to our work, since the inter-frame motion we will encounter will be non-linear 

and non-global. 

 

The simplest spatial domain super resolution method involves the interpolation of non-

uniformly spaced samples.  The low-resolution observation image sequence is registered with 

a reference image from the sequence, resulting in a composite image composed of samples 

on a non-uniformly spaced sampling grid.  These non-uniformly spaced sample points are 

interpolated and re-sampled on the high-resolution sampling grid.  This approach, whilst 

initially seeming attractive, is overly simplistic and does not account for the fact that the low 

resolution images do not result from ideal sampling but from a spatial average around the 

sample point.  The result is a super resolution image which does not contain the full available 

frequency range [54]. 

 

Another sub-class of solutions in the spatial domain uses a simulate and correct strategy.  

Given an estimate of the super resolution image and a model of the imaging process, the 

super resolution estimate is processed by the imaging model to produce a simulated set of 

low resolution images.  These images are then compared to the actual low resolution 

observations and a level of error is computed and used to update the super resolution image.  
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This process is then iterated until an end condition is met, typically the minimisation of the 

error metric between the simulated and observed low resolution images.  Iterative, simulate 

and correct methods are essentially performing super resolution reconstruction by back-

projecting the error between the simulated and observed images. 

 

Another super resolution research area encompasses a number of probabilistic methods.  

The super resolution problem is an ill-posed inverse problem and as such techniques which 

are capable of including a-priori constraints are well suited to this application [54].  Bayesian 

methods, which inherently support a-priori constraints in the form of 

prior probability density functions, are central to finding solutions to 

ill-posed inverse problems.  The Bayesian approach to this kind of 

problem is identical to the Maximum A-Posteriori (MAP) estimation 

solutions for super resolution.   

 

Projection onto convex sets (POCS) is another method widely used 

for estimating super resolution solutions.  POCS defines a solution 

space as the intersection of convex constraint sets and provide a 

convenient method for including constraints on the reconstruction.  

Constraints in the POCS solution are defined as convex sets which 

represent desirable characteristics of the super resolution 

reconstruction such as smoothness and fidelity to the input data etc.  

POCS is perhaps the most powerful of the super resolution methods 

since it is simple and intuitive to implement, any motion estimation 

model may be used for registration and reconstruction image 

constraints can easily be incorporated into the algorithms structure. 

Figure 7: A super resolution 

image (top) produced from 

four low resolution video 

frames (bottom) as 
6.2 Papoulis-Gerchberg Super Resolution 

The Papoulis-Gerchberg algorithm [26, 27] is a special case of the projection onto convex 

Sets (POCS) group of super resolution solutions.  We assume the image belongs to two 

convex sets: some of the pixels in the high resolution image grid are known and the high 

frequency components in the high resolution image are zero.  Through repeated projections 

the algorithm converges on the desired super resolution image at the intersection of the two 

sets. 

 

The steps in this algorithm first require each of the image frames to be registered to one 

reference frame.  The next section discusses the specifics of the motion estimation algorithm.  

Following registration a high resolution grid is formed at the desired super resolution.  Pixel 

values in this grid are set from values in each of the low resolution images (after 

compensating for motion from the reference frame).  Some pixel values on the high resolution 

grid will still be set to zero at this point.  The high frequency components of this image are 
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then se to zero in the frequency domain.  The known pixels from the low resolution images 

are then re-projected onto the new image back in the spatial domain.  This process is then 

iterated until the image converges to the super resolution solution.  Typically this can take as 

many as 200 iterations.  The thresholding of the image in the frequency domain is equivalent 

to a Gaussian blur in the spatial domain.  This attempts to interpolate the unknown high 

resolution pixels values, whilst by re-projecting the known low resolution image pixels we do 

make a prediction for the high frequency components of the image.  Figure 7 shows the 

process and the results of the reconstruction.  Visual inspection shows the super resolution 

reconstruction to be of superior image quality than a bi-cubic interpolation resize of a single 

image frame.  The process also seems to have eliminated a degree of noise from the image. 

 

6.3 Motion Estimation Methods 

In order for successful super resolution reconstruction to occur the sequence of input images 

must be registered to a reference frame.  Typically this process occurs by first estimating the 

motion between each frame and then mapping the pixels back to their location in the 

reference image.  Many different forms of registration have been tried in conjunction with a 

variety of super resolution algorithms, however, the type of motion present between input 

images usually determines which registration technique will be used.  Early examples of 

super resolution work concentrated on registration for global translation models, moving 

forward to accommodate rotation in later work.  Use of the probabilistic or projection onto 

convex sets methods allows the specification of arbitrary motion models and hence any type 

of scene motion can, theoretically at least, be compensated for.  Our work, by definition, 

considers only dense motion models, for which we have an estimate of the motion of each 

pixel in an image. 

 

Implementations 

of Horn and 

Schunck [55], 

Lucas and 

Kanade [56] and 

block matching 

optical flow 

algorithms were 

suit

sele

Figu

bee

algo
Figure 8: Motion compensated images. Lucas and Kanade (left) and Horn and 

Schunck (right). 
tested for 

ability within the registration process.  The Horn and Schunck algorithm was eventually 

cted since it appears more robust against camera noise and other image artefacts.  

re 8 shows a motion compensated frame from a real video sequence.  Each frame has 

n registered to the reference frame in the sequence.  The aim of the motion compensation 

rithm is to move pixels from each video frame to their corresponding position in a 
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reference frame.  As can be seen from figure 8 the large number of “holes” in the Lucas and 

Kanade compensated image suggest that this algorithm is performing poorly in this context. 

The Horn and Schunck algorithm clearly out performs the Lucas and Kanade optical flow 

technique and since sub-pixel motion is predicted by this method it thus becomes possible to 

provide an accurate mapping on to the super resolution grid.  A number of recent 

developments attempt to combine the global properties of algorithms such as the 

Horn/Schunck approach with the advantages of local methods such as those proposed by 

Lucas/Kanade.  Bruhn [57] discusses the merits of such an approach in his paper. 

 

6.4 Super Resolution Conclusions 

Figure 7 shows the results from a super resolution reconstruction along with a bi-linear 

interpolation of a lower resolution image for comparison.  Clearly the SR reconstruction, taken 

from four video frames, is superior in quality.  Much of the image noise has been 

compensated for by the additional available data.  However, the module encounters problems 

when the motion estimation stage fails to perform accurately.  Errors at this stage can cause 

“ghosting” effects on the reconstruction.  Even minor ghosting can cause serious errors in the 

matching stage of the reconstruction process.  Furthermore since the SR reconstruction is 

carried out independently for each input camera, differences in the mapping to higher 

resolutions between the two cameras can amplify matching errors.  The issues encountered 

here in relation to super resolution mainly stem from inaccuracies in the motion estimation 

and image registration stages.  A number of sub-pixel motion estimation algorithms were 

considered, however, this estimation problem is similar to the stereo correspondence 

problem, and none of the tested estimation algorithms performed to a sufficient accuracy to 

enhance the stereo reconstruction process.  Instead, it was found that using super resolution 

as a pre-processing step for stereo correlation actually reduced the accuracy of the stereo 

matching process. 

 

In order to test the affects of applying super resolution techniques to enhance the spatial 

resolution of an image sequence, a single test image was created and a small amount of 

Gaussian noise added.  The test image was then shrunk to half its original size.  This process 

was repeated a number of times in order to produce a test sequence for the super resolution 

algorithm.  After reconstructing the sequence into a single super resolution image a 

comparison was then made with the original test image in order to accurately quantify the loss 

of image quality.  Comparison between the super resolution image and the original image was 

carried out by producing a difference image and then calculating a single SSD value for the 

whole image to represent the total error in the reconstruction.  In order to test the quality of 

the super resolution reconstruction an identical comparison was made between the original 

image and one of the noisy input images which was scaled back to the original image size 

using bi-cubic interpolation.  The following table shows the results produced using this 

method. 
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Input Image(s) Number of Images Image SSD 

Original Image 1 0 

Gaussian Noise Image 

(Nearest Neighbour) 
1 45733773 

Gaussian Noise Image 

(Bi-cubic) 
1 41130619 

Gaussian Noise Sequence 

(Super Resolution) 
4 39909051 

Gaussian Noise Sequence 

(Super Resolution) 
16 25476577 

Gaussian Noise Sequence 

(Super Resolution) 
32 23396383 

 

As can be seen from these results, super resolution provides a more accurate reconstruction 

of the high resolution image than using bi-cubic or nearest neighbour scaling.  It should be 

noted, however, that the increase in accuracy (over bi-cubic scaling methods) available 

through the use of super resolution is fairly small when a small number of input images is 

used.  Furthermore, the increase in quality gained by using additional images in the SR 

process begins to decrease as more images are added to the sequence, whilst processing 

time begins to increase dramatically. 

 

Despite the implementation of a relatively robust super resolution reconstruction algorithm, 

the results, when applied to the stereo vision problem are not satisfactory.  Since the process 

is an estimation of the original high resolution source a degree of error is to be expected, this 

error however, when factored into the constrained optimisation process of the stereo vision 

system as a whole causes errors in later reconstruction processes which invalidate any 

increase in spatial/depth resolution as a result of using the super resolution module.  

Furthermore, recent work in 3D recognition and model capture suggests that good recognition 

rates can be achieved from models produced using low resolution (640x480) cameras and 

reconstructed to only 64 depth levels [20], thus, potentially invalidating the need for super 

resolution in our system.  In order to increase effective depth resolution in our models, future 

work will consider better interpolation and smoothing in the 3D domain, rather than as a pre-

processing step applied to the 2D input. 

 

Page 25 of 36 



7 Surface Fitting 

Once a point cloud has been generated it becomes necessary to estimate the surface from 

which the points originally came.  Many solutions have been discussed in the literature, some 

of the more relevant methods are discussed below. 

7.1 Methods 

A large amount of research has also gone into the development of algorithms to convert, 

possibly incomplete, point cloud data produced by the earlier system stages into more 

useable forms such as meshes or other 3D surfaces.  One possible technique for 

implementing this process is discussed in [58] where a technique using simulated annealing 

to create an optimal surface mesh is implemented.  Much more advanced techniques capable 

of dealing with situations such as incomplete meshes or other errors are also available.  An 

example of one such technique is discussed in [59].  Here surfaces are represented 

completely by polyharmonic radial basis functions (RBF).  Fast methods for fitting and 

evaluating RBFs have been developed which allow techniques such as this to be 

implemented quickly and efficiently, this type of representation also lends itself for the efficient 

processing of large data sets.  Since we expect to be matching a large number of face points 

it is possible that in the future a solution such as this for representing face models will be 

required. 

 

In addition to the recent advancements in mesh generation and surface reconstruction 

techniques a number of algorithms developed some time ago are still proving useful.  Convex 

Hulls are an important topic in computational geometry and form the basis of a number of 

calculations relating to mesh construction.  QuickHull is a widely used algorithm for computing 

the convex hull of a point set and is defined in greater detail in [60].  Delaunay triangulations 

are an example of a set of algorithms that have their mathematical basis in convex hull 

calculations.  The Delaunay method works by subdividing the volume defined by the input 

point cloud into tetrahedrons with the property that the circumsphere of every tetrahedron 

does not contain any other points of the triangulation.  In addition to the method described 

here constraints have been developed by various authors in order to improve the triangulation 

accuracy and efficiency, Kallmann, Bier and Thalmann discuss algorithms for “the efficient 

insertion and removal of constraints in Delaunay Triangulations” in [61].  With the addition of a 

set of constraints Delaunay triangulations are capable of generating meshes suitable for our 

surface requirements.  Further to this description of the Delaunay method Bourke provides an 

algorithm for efficient triangulation of irregularly spaced data points in [62], Bourke’s work has 

specific applications in terrain modelling however is based on the Delaunay method and as 

such has relevance to the general surface construction problem. 
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Another volumetric reconstruction method that has been researched and used effectively in 

past work is the marching cubes algorithm [63].  As with Delaunay’s methods, marching 

cubes  has been subjected to numerous modifications and algorithmic improvements [64, 65].  

The basic form of the algorithm splits the dataspace into a series of sub-cubes.  Eight sample 

points, known as voxels, that form the sub-cube are considered for triangulation.  When one 

sub-cube is fully processed the algorithm moves (“marches”) on to the next sub-cube until a 

complete surface has been reconstructed in a recursive fashion.  The original Marching 

Cubes technique “did not resolve ambiguous cases… resulting in spurious holes and surfaces 

in the surface representation for some datasets”, [64], however several recent proposed 

improvements deal with such cases [64-66] in order to provide more complete surface 

reconstructions. 

7.2 Advanced Methods 

In addition to the algorithms and techniques discussed above a number of surface 

reconstruction implementations are widely available and used within many academic and 

commercial research projects.  These implementations often use techniques discussed 

above, such as Voronoi and Delaunay triangulation as a basis for their calculations.  The 

Power Crust algorithm [67, 68] takes an arbitrary, unordered series of 3D points and 

calculates an approximate medial axis transform of the object.  The inverse of this transform 

is then used in order to produce a surface representation from the medial axis transform.  

This algorithm has theoretical guarantees which ensure that any point cloud input gives a 3 

dimensional polyhedral solid as output.  This unconditional guarantee makes the algorithm 

quite robust and eliminates the polygonalization, hole-filling or manifold extraction post-

processing steps required in previous surface reconstruction algorithms. 

 

Bezier spline surfaces have also proved popular a reconstruction method.  Here the point 

cloud data is assumed to lie on, initially unknown Bezier curves.  The Bezier surface can then 

be estimated using a variety of techniques.  One of the most successful implementations 

utilizes the concept of the functional network for B-Spline estimation.  Discussion and results 

of this investigation can be found in [69]. 

 

A second, widely available surface reconstruction algorithm, utilizes similar underlying 

mathematics to the Power Crust algorithm.  The Cocone reconstruction [70, 71] algorithm 

again uses Voronoi diagrams and the medial axis transform to build a robust, hole-filled, 

polyhedral surface.  Each of the B-Spline, Cocone and Power Crust based algorithms will be 

fully tested for suitability within the recognition system, once the accuracy of the input point 

clouds has been more fully verified and more evidence on the effectiveness of each of the 

solutions has been considered. 
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8  Accuracy Requirements for 3D Reconstruction Sub-System 

In order to accurately differentiate between 3D head models for recognition a certain degree 

of accuracy is required within the system from which the models are produced.  The following 

work attempts to discover what 

level of accuracy would be 

required to successfully 

differentiate between head models 

of different recognition candidates. 

 

In order to test what level of 

odel from

s can be seen from the table, the average

ollowing comparisons between different sub

accuracy would be required eight 

models were randomly selected 

from the Nottingham 3D Head 

model database.  Each model was 

then aligned with a reference 

model by minimising the global 

Euclidean distance between each 

of the subjects.  Next each model 

was compared with every other m

distance of points in front and behind of the 

standard deviation.  Figure 9 shows the result

this experiment are recorded in table labelled 

 

 

A

falls between approximately 2 and 6 millimet

and 6 millimetres.  This suggests that an accu

distinguish between different subjects in this e

 

F

the same subject taken in different poses 

experiment are shown in the table below a

different models of the same recognition subje
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Figure 9: Extra Personal Face Difference Map
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 distance between models of different subjects 

jects we continued testing between models of 

reference model was computed along with the 

s of one such comparison.  The full results from 

“Inter-Model/Inter Person Difference Measure”. 

 the set.  For each comparison the 

res, whilst the standard deviation is between 3 

racy of approximately 1mm would be suitable to 

xperiment. 

and at different times.  The results from this 

long with a sample difference map between 
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It is immediately obvious from 

the difference map that 

models of the same subject 

are much more similar than 

models of different subjects 

since the difference map is 

coloured mostly green 

(showing these parts of the 

different models are the 

same).  Variations exist 

between parts of the model 

which are susceptible to 

changes in expression such 

as around the eyes and 

on invariance by not factoring 

these parts of the model during the recognition process. 

 

mouth.  A robust recognition system would achieve expressi

he “Inter-Model/Same Person Difference Measure” table shows the average difference T

between models of the same person captured at different times.  The same 

registration/comparison process was used for these models as with the previous experiment.  

When these results are compared with those from the previous table it can be seen the inter-

model differences between the same subject are smaller than the differences between 

different subjects.  This suggests that a recognition system would be able to classify different 

and same subject models correctly, given sufficiently accurate models. 

 

 
 

rom the small subset of the 3D Head Model database used here is would seem that a F

reconstruction system with an accuracy of 1mm would be sufficient to recognise each of the 

subjects used in this test.  It should however be noted that a sample of eight head models is 

relatively small and it is possible that the inclusion of more models would increase the 

demands for accuracy to a higher level, however, it is likely that using a global average of 

Euclidean difference would not be a robust recognition metric. This is due to its sensitivity to 

expression variation.  A more sophisticated recognition metric would likely allow some 

additional leeway in the reconstruction accuracy.  These and other issues will be dealt with at 

a later date when work has progressed further within the recognition sub-system. 
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9 Conclusions and Future Work 

Whilst the project is progressing towards a functioning 3D recognition system a number of 

issues still require resolution.  Primarily the overall accuracy of the reconstruction system 

must be improved before serious work can commence in the recognition stages of the work.  

The work has so far been successful in implementing a robust correlation algorithm and 

improving its accuracy through the use of a sophisticated matching strategy, however, further 

work needs to be carried out in detecting errors and forming an accurate model.  To this end 

research has been carried out into methods both for improving the matching accuracy and for 

estimating a surface given the reconstructed point cloud. 

 

Initial work should be carried out to investigate the most accurate techniques for 2D to 3D 

projection once a set of stereo correspondences have been obtained.  Many techniques exist 

which vary depending on the amount of prior knowledge available about the stereo system.  

Since we will be using a fully calibrated stereo rig with full knowledge of intrinsic and extrinsic 

camera parameters we will investigate the most accurate reconstruction methods available.  

Following successfully achieving 2D to 3D projection we will begin working on bundle 

adjustment techniques.  These methods use iterative back projection in order to refine both 

the point correspondences and the camera projection matrices using a geometric 

minimisation method.  This will allow the construction of a refined 3D model with maximum 

accuracy (given the initial correspondences and camera projection parameters). 

 

Following the 3D projection and bundle adjustment stages we will have an accurately 

projected point cloud representing features on the face surface, however, a certain amount of 

noise is expected.  Some research will be carried out in order to discover suitable methods for 

noise reduction in three dimensions, although it may prove simpler to develop more 

sophisticated techniques for suppressing the noise during the matching stage.  Indeed it may 

be desirable to carry out noise reduction in both two and three dimensions, however only 

comprehensive experimentation will allow analysis of the benefits of both proposed methods. 

 

Future work should now begin to consider in more detail which surface reconstruction 

algorithm is most suitable for our work and a through investigation into available recognition 

methods should be considered.  Section 7 provides a brief outline of some of the available 

methods, however, carefully consideration should be given to which technique will best 

complement the (as yet undeveloped) recognition stage of the system. 

 

Despite the success of the super resolution module in producing high resolution 

reconstructions from lower resolution imagery, it seems as though the accuracy of our 

implementation is not satisfactory for use in the stereo vision system.  This appears mainly to 

be due to inaccuracies in the motion estimation methods.  Furthermore, recent work suggests 
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that the resolution improvements that could be gained through super resolution are not 

required for effective recognition. Additionally, the super resolution process introduces an 

unnecessary number of additional estimation steps into the system as a whole, degrading 

overall system performance. As such, additional work in this area is unlikely, although some 

of the concepts of the process may be utilised should a more robust motion estimation 

solution be considered. 

 

Much of the focus of future work should be placed on research into the most appropriate 

recognition algorithms.  Particular attention should be placed on the methods proposed by 

Bronstein, Bronstein and Kimmel [20], especially their novel, expression invariant, 3D face 

representation.  Their work is currently considered state-of-the-art, with the ability to correctly 

discriminate between identical twins.  Also, their work incorporates the use of a custom built 

scanning solution and as such their goals are closely related to those of this work.  Much of 

the remaining project time should be spent studying and developing the recognition stage of 

this project.  This is the area for which there has been the least amount of previous study, 

hence we will probably have to develop our own novel techniques whilst furthering recent 

discoveries by other researchers. 

 

In summary, future research should build on the reconstruction work already carried out to 

achieve the following goals: 

 

- Address the issues considered in section 6. 

- Implement suitable 2D->3D projection techniques. 

- Develop bundle adjustment refinement sub-system. 

- Develop and test a suitable surface construction method. 

- Implement a 3D recognition system optimised for data captured with the 

proposed stereo vision system. 

- Integrate calibration, 3D projection and recognition stages. 

- Compare and contrast the system as a whole with other current state of the art 

recognition techniques, including both 2D and 3D methods. 
 

A more detailed projected time plan can be seen in Appendix A, although this plan is subject 

to change depending on the success / failure of other modules and pieces of work within the 

project. 
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10 Appendix A 

The following chart shows the projected project time plan. 
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